Spaces:
Restarting
Restarting
File size: 45,225 Bytes
b560569 575b933 b0464a9 87a87e7 791c130 266ae82 8673558 f7fc39b 575b933 266ae82 575b933 2601f1c 575b933 266ae82 2601f1c 9d99925 266ae82 3b4dccb d33040c 3b4dccb 8673558 deb2291 266ae82 deb2291 c6716b6 3b4dccb 2601f1c b0464a9 2a3b22e 3b4dccb 2a3b22e eb46c40 d33040c eb46c40 2601f1c eb46c40 6a8e128 266ae82 d33040c 791c130 d33040c 791c130 d33040c 3b4dccb 575b933 2601f1c 3b4dccb 348bc84 791c130 d33040c 791c130 d33040c 3b4dccb 2601f1c 791c130 266ae82 19ea45c 2601f1c 6a8e128 791c130 c205383 2601f1c c205383 2601f1c c205383 2601f1c c205383 d33040c 365263e d33040c 2601f1c 266ae82 365263e 266ae82 c6716b6 2601f1c d33040c eb46c40 266ae82 2601f1c d33040c 791c130 575b933 d33040c 791c130 d33040c 3b4dccb a342a6b b0464a9 2a3b22e adb3bbe 266ae82 67742c4 a342a6b 6a8e128 2601f1c 67742c4 2601f1c adb3bbe a342a6b d33040c 2601f1c a342a6b 575b933 0612e1d 4ad44b9 266ae82 0612e1d adb3bbe 791c130 d33040c 2601f1c 2a3b22e 4ad44b9 2a3b22e a342a6b 2a3b22e 8673558 d33040c 2601f1c d33040c 2601f1c 8673558 791c130 d33040c 791c130 365263e d33040c 8673558 d33040c 791c130 d33040c 3b902c0 791c130 2601f1c 266ae82 d33040c 266ae82 d33040c 6a8e128 365263e 2601f1c 365263e ddd95f0 8673558 6a8e128 2601f1c 365263e 2601f1c 998bc4b 2601f1c 365263e 2601f1c c205383 998bc4b c205383 2601f1c 266ae82 8673558 ddd95f0 8673558 2601f1c 365263e 2601f1c ddd95f0 eb46c40 2601f1c 365263e d33040c eb46c40 8673558 ddd95f0 2601f1c 365263e 2601f1c 365263e 2601f1c ddd95f0 2601f1c eb46c40 2601f1c eb46c40 2601f1c eb46c40 2601f1c eb46c40 2601f1c 365263e 2601f1c 8673558 2601f1c eb46c40 2601f1c ddd95f0 2601f1c 365263e 2601f1c ddd95f0 998bc4b ddd95f0 2601f1c 365263e 2601f1c 365263e 2601f1c 365263e 2601f1c 365263e 2601f1c 365263e 2601f1c 365263e 2601f1c 365263e 2601f1c 8673558 d33040c eb46c40 d33040c 2601f1c 365263e 2601f1c 8673558 2601f1c ddd95f0 eb46c40 d33040c ddd95f0 eb46c40 d33040c 2601f1c 8673558 ddd95f0 8673558 365263e 2601f1c 365263e 8673558 eb46c40 8673558 365263e 8673558 2601f1c 365263e ddd95f0 2601f1c 365263e 2601f1c ddd95f0 365263e 8673558 2601f1c 365263e 2601f1c 8673558 eb46c40 8673558 eb46c40 365263e 8673558 ddd95f0 2601f1c eb46c40 8673558 998bc4b ddd95f0 998bc4b eb46c40 ddd95f0 998bc4b ddd95f0 998bc4b 365263e 2601f1c ddd95f0 998bc4b 8673558 2601f1c ddd95f0 8673558 ddd95f0 8673558 d33040c 2601f1c 365263e 2601f1c 365263e 2601f1c 365263e 2601f1c 365263e 2601f1c 8673558 2601f1c 266ae82 8673558 2601f1c 365263e 2601f1c d33040c 8673558 365263e d33040c ddd95f0 2601f1c 365263e 2601f1c d33040c ddd95f0 365263e 8673558 6a8e128 365263e 2601f1c 266ae82 365263e 2601f1c 8673558 eb46c40 365263e 8673558 365263e ddd95f0 2601f1c 8673558 365263e eb46c40 365263e 2601f1c 365263e 2601f1c 6a8e128 791c130 266ae82 2601f1c eb46c40 a342a6b adb3bbe 06d22e5 d33040c 4ad44b9 eb46c40 a342a6b 575b933 d33040c 365263e d33040c a342a6b d33040c 2601f1c a342a6b 266ae82 a342a6b 538b42b 2601f1c 266ae82 ddd95f0 266ae82 365263e 8673558 365263e 266ae82 365263e ddd95f0 266ae82 eb46c40 2601f1c 365263e 2601f1c 266ae82 adb3bbe 575b933 d33040c 575b933 d33040c 2601f1c a342a6b d33040c 365263e 2601f1c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 |
import gradio as gr
import pandas as pd
import os
import logging
import matplotlib
matplotlib.use('Agg') # Set backend for Matplotlib to avoid GUI conflicts with Gradio
import matplotlib.pyplot as plt
import time # For profiling if needed
# --- Module Imports ---
from gradio_utils import get_url_user_token
# Functions from newly created/refactored modules
from config import (
LINKEDIN_CLIENT_ID_ENV_VAR, BUBBLE_APP_NAME_ENV_VAR,
BUBBLE_API_KEY_PRIVATE_ENV_VAR, BUBBLE_API_ENDPOINT_ENV_VAR)
from state_manager import process_and_store_bubble_token
from sync_logic import sync_all_linkedin_data_orchestrator
from ui_generators import (
display_main_dashboard,
run_mentions_tab_display,
run_follower_stats_tab_display,
build_analytics_tab_plot_area,
BOMB_ICON, EXPLORE_ICON, FORMULA_ICON, ACTIVE_ICON
)
from analytics_data_processing import prepare_filtered_analytics_data
from analytics_plot_generator import (
generate_posts_activity_plot,
generate_mentions_activity_plot, generate_mention_sentiment_plot,
generate_followers_count_over_time_plot,
generate_followers_growth_rate_plot,
generate_followers_by_demographics_plot,
generate_engagement_rate_over_time_plot,
generate_reach_over_time_plot,
generate_impressions_over_time_plot,
create_placeholder_plot,
generate_likes_over_time_plot,
generate_clicks_over_time_plot,
generate_shares_over_time_plot,
generate_comments_over_time_plot,
generate_comments_sentiment_breakdown_plot,
generate_post_frequency_plot,
generate_content_format_breakdown_plot,
generate_content_topic_breakdown_plot
)
from formulas import PLOT_FORMULAS
# --- NEW CHATBOT MODULE IMPORTS ---
from chatbot_prompts import get_initial_insight_and_suggestions
from chatbot_handler import generate_llm_response
# --- END NEW CHATBOT MODULE IMPORTS ---
# Configure logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(module)s - %(message)s')
# Mapping from plot_configs IDs to PLOT_FORMULAS keys
PLOT_ID_TO_FORMULA_KEY_MAP = {
"posts_activity": "posts_activity",
"mentions_activity": "mentions_activity",
"mention_sentiment": "mention_sentiment",
"followers_count": "followers_count_over_time",
"followers_growth_rate": "followers_growth_rate",
"followers_by_location": "followers_by_demographics",
"followers_by_role": "followers_by_demographics",
"followers_by_industry": "followers_by_demographics",
"followers_by_seniority": "followers_by_demographics",
"engagement_rate": "engagement_rate_over_time",
"reach_over_time": "reach_over_time",
"impressions_over_time": "impressions_over_time",
"likes_over_time": "likes_over_time",
"clicks_over_time": "clicks_over_time",
"shares_over_time": "shares_over_time",
"comments_over_time": "comments_over_time",
"comments_sentiment": "comments_sentiment_breakdown",
"post_frequency_cs": "post_frequency",
"content_format_breakdown_cs": "content_format_breakdown",
"content_topic_breakdown_cs": "content_topic_breakdown",
"mention_analysis_volume": "mentions_activity",
"mention_analysis_sentiment": "mention_sentiment"
}
# --- Analytics Tab: Plot Figure Generation Function ---
def update_analytics_plots_figures(token_state_value, date_filter_option, custom_start_date, custom_end_date):
logging.info(f"Updating analytics plot figures. Filter: {date_filter_option}, Custom Start: {custom_start_date}, Custom End: {custom_end_date}")
num_expected_plots = 19
if not token_state_value or not token_state_value.get("token"):
message = "❌ Accesso negato. Nessun token. Impossibile generare le analisi."
logging.warning(message)
placeholder_figs = [create_placeholder_plot(title="Accesso Negato", message="Nessun token.") for _ in range(num_expected_plots)]
return [message] + placeholder_figs
try:
(filtered_merged_posts_df,
filtered_mentions_df,
date_filtered_follower_stats_df,
raw_follower_stats_df,
start_dt_for_msg, end_dt_for_msg) = \
prepare_filtered_analytics_data(
token_state_value, date_filter_option, custom_start_date, custom_end_date
)
except Exception as e:
error_msg = f"❌ Errore durante la preparazione dei dati per le analisi: {e}"
logging.error(error_msg, exc_info=True)
placeholder_figs = [create_placeholder_plot(title="Errore Preparazione Dati", message=str(e)) for _ in range(num_expected_plots)]
return [error_msg] + placeholder_figs
date_column_posts = token_state_value.get("config_date_col_posts", "published_at")
date_column_mentions = token_state_value.get("config_date_col_mentions", "date")
media_type_col_name = token_state_value.get("config_media_type_col", "media_type")
eb_labels_col_name = token_state_value.get("config_eb_labels_col", "li_eb_label")
plot_figs = []
try:
# Define plot functions and their arguments
# Order matters and must match plot_configs
plot_definitions = [
{"func": generate_followers_count_over_time_plot, "args": [date_filtered_follower_stats_df, 'follower_gains_monthly'], "is_demographic": False},
{"func": generate_followers_growth_rate_plot, "args": [date_filtered_follower_stats_df, 'follower_gains_monthly'], "is_demographic": False},
{"func": generate_followers_by_demographics_plot, "args": [raw_follower_stats_df, 'follower_geo', "Follower per Località"], "type_value_key": "follower_geo", "is_demographic": True},
{"func": generate_followers_by_demographics_plot, "args": [raw_follower_stats_df, 'follower_function', "Follower per Ruolo"], "type_value_key": "follower_function", "is_demographic": True},
{"func": generate_followers_by_demographics_plot, "args": [raw_follower_stats_df, 'follower_industry', "Follower per Settore"], "type_value_key": "follower_industry", "is_demographic": True},
{"func": generate_followers_by_demographics_plot, "args": [raw_follower_stats_df, 'follower_seniority', "Follower per Anzianità"], "type_value_key": "follower_seniority", "is_demographic": True},
{"func": generate_engagement_rate_over_time_plot, "args": [filtered_merged_posts_df, date_column_posts], "is_demographic": False},
{"func": generate_reach_over_time_plot, "args": [filtered_merged_posts_df, date_column_posts], "is_demographic": False},
{"func": generate_impressions_over_time_plot, "args": [filtered_merged_posts_df, date_column_posts], "is_demographic": False},
{"func": generate_likes_over_time_plot, "args": [filtered_merged_posts_df, date_column_posts], "is_demographic": False},
{"func": generate_clicks_over_time_plot, "args": [filtered_merged_posts_df, date_column_posts], "is_demographic": False},
{"func": generate_shares_over_time_plot, "args": [filtered_merged_posts_df, date_column_posts], "is_demographic": False},
{"func": generate_comments_over_time_plot, "args": [filtered_merged_posts_df, date_column_posts], "is_demographic": False},
{"func": generate_comments_sentiment_breakdown_plot, "args": [filtered_merged_posts_df, 'comment_sentiment'], "is_demographic": False},
{"func": generate_post_frequency_plot, "args": [filtered_merged_posts_df, date_column_posts], "is_demographic": False},
{"func": generate_content_format_breakdown_plot, "args": [filtered_merged_posts_df, media_type_col_name], "is_demographic": False},
{"func": generate_content_topic_breakdown_plot, "args": [filtered_merged_posts_df, eb_labels_col_name], "is_demographic": False},
{"func": generate_mentions_activity_plot, "args": [filtered_mentions_df, date_column_mentions], "is_demographic": False},
{"func": generate_mention_sentiment_plot, "args": [filtered_mentions_df], "is_demographic": False}
]
for i, plot_def in enumerate(plot_definitions):
plot_fn = plot_def["func"]
args = plot_def["args"]
plot_title_for_error = args[2] if plot_def["is_demographic"] else plot_fn.__name__
try:
# Specific check for demographic plots if raw_follower_stats_df is empty or missing key columns
if plot_def["is_demographic"]:
df_arg = args[0] # raw_follower_stats_df
type_val_col = plot_def["type_value_key"]
if df_arg is None or df_arg.empty:
logging.warning(f"raw_follower_stats_df is empty. Cannot generate demographic plot: {plot_title_for_error}")
raise ValueError(f"Dati demografici mancanti (raw_follower_stats_df vuoto).")
if type_val_col not in df_arg.columns:
logging.warning(f"Colonna '{type_val_col}' mancante in raw_follower_stats_df per il grafico '{plot_title_for_error}'. Colonne disponibili: {df_arg.columns.tolist()}")
raise KeyError(f"Colonna dati '{type_val_col}' non trovata.")
fig = plot_fn(*args)
plot_figs.append(fig)
except (KeyError, ValueError) as plot_e: # Catch KeyError for missing columns, ValueError for other data issues
logging.error(f"Errore generazione grafico '{plot_title_for_error}' (slot {i}): {plot_e}", exc_info=False) # Set exc_info to False for cleaner logs for known data issues
plot_figs.append(create_placeholder_plot(title=f"Errore Dati: {plot_title_for_error}", message=f"Impossibile generare: {str(plot_e)}"))
except Exception as plot_e: # Catch other unexpected errors
logging.error(f"Errore imprevisto generazione grafico '{plot_title_for_error}' (slot {i}): {plot_e}", exc_info=True)
plot_figs.append(create_placeholder_plot(title=f"Errore Grafico: {plot_title_for_error}", message=f"Dettaglio: {str(plot_e)[:100]}"))
message = f"📊 Analisi aggiornate per il periodo: {date_filter_option}"
if date_filter_option == "Intervallo Personalizzato":
s_display = start_dt_for_msg.strftime('%Y-%m-%d') if start_dt_for_msg else "Qualsiasi"
e_display = end_dt_for_msg.strftime('%Y-%m-%d') if end_dt_for_msg else "Qualsiasi"
message += f" (Da: {s_display} A: {e_display})"
final_plot_figs = []
for i, p_fig in enumerate(plot_figs):
if p_fig is not None and not isinstance(p_fig, str):
final_plot_figs.append(p_fig)
else:
logging.warning(f"Plot generation failed or unexpected type for slot {i}, using placeholder. Figure: {p_fig}")
final_plot_figs.append(create_placeholder_plot(title="Errore Grafico", message="Impossibile generare questa figura."))
while len(final_plot_figs) < num_expected_plots:
logging.warning(f"Adding missing plot placeholder. Expected {num_expected_plots}, got {len(final_plot_figs)}.")
final_plot_figs.append(create_placeholder_plot(title="Grafico Mancante", message="Figura non generata."))
return [message] + final_plot_figs[:num_expected_plots]
except Exception as e:
error_msg = f"❌ Errore durante la generazione delle figure dei grafici analitici: {e}"
logging.error(error_msg, exc_info=True)
placeholder_figs = [create_placeholder_plot(title="Errore Generazione Grafici", message=str(e)) for _ in range(num_expected_plots)]
return [error_msg] + placeholder_figs
# --- Gradio UI Blocks ---
with gr.Blocks(theme=gr.themes.Soft(primary_hue="blue", secondary_hue="sky"),
title="LinkedIn Organization Dashboard") as app:
token_state = gr.State(value={
"token": None, "client_id": None, "org_urn": None,
"bubble_posts_df": pd.DataFrame(), "bubble_post_stats_df": pd.DataFrame(),
"bubble_mentions_df": pd.DataFrame(), "bubble_follower_stats_df": pd.DataFrame(),
"fetch_count_for_api": 0, "url_user_token_temp_storage": None,
"config_date_col_posts": "published_at", "config_date_col_mentions": "date",
"config_date_col_followers": "date", "config_media_type_col": "media_type",
"config_eb_labels_col": "li_eb_label"
})
chat_histories_st = gr.State({})
current_chat_plot_id_st = gr.State(None)
gr.Markdown("# 🚀 LinkedIn Organization Dashboard")
url_user_token_display = gr.Textbox(label="User Token (Nascosto)", interactive=False, visible=False)
status_box = gr.Textbox(label="Stato Generale Token LinkedIn", interactive=False, value="Inizializzazione...")
org_urn_display = gr.Textbox(label="URN Organizzazione (Nascosto)", interactive=False, visible=False)
app.load(fn=get_url_user_token, inputs=None, outputs=[url_user_token_display, org_urn_display], api_name="get_url_params", show_progress=False)
def initial_load_sequence(url_token, org_urn_val, current_state):
status_msg, new_state, btn_update = process_and_store_bubble_token(url_token, org_urn_val, current_state)
dashboard_content = display_main_dashboard(new_state)
return status_msg, new_state, btn_update, dashboard_content
with gr.Tabs() as tabs:
with gr.TabItem("1️⃣ Dashboard & Sync", id="tab_dashboard_sync"):
gr.Markdown("Il sistema controlla i dati esistenti da Bubble. 'Sincronizza' si attiva se sono necessari nuovi dati.")
sync_data_btn = gr.Button("🔄 Sincronizza Dati LinkedIn", variant="primary", visible=False, interactive=False)
sync_status_html_output = gr.HTML("<p style='text-align:center;'>Stato sincronizzazione...</p>")
dashboard_display_html = gr.HTML("<p style='text-align:center;'>Caricamento dashboard...</p>")
org_urn_display.change(
fn=initial_load_sequence,
inputs=[url_user_token_display, org_urn_display, token_state],
outputs=[status_box, token_state, sync_data_btn, dashboard_display_html],
show_progress="full"
)
with gr.TabItem("2️⃣ Analisi", id="tab_analytics"):
gr.Markdown("## 📈 Analisi Performance LinkedIn")
gr.Markdown("Seleziona un intervallo di date. Clicca i pulsanti (💣 Insights, ƒ Formula, 🧭 Esplora) su un grafico per azioni.")
analytics_status_md = gr.Markdown("Stato analisi...")
with gr.Row():
date_filter_selector = gr.Radio(
["Sempre", "Ultimi 7 Giorni", "Ultimi 30 Giorni", "Intervallo Personalizzato"],
label="Seleziona Intervallo Date", value="Sempre", scale=3
)
with gr.Column(scale=2):
custom_start_date_picker = gr.DateTime(label="Data Inizio", visible=False, include_time=False, type="datetime")
custom_end_date_picker = gr.DateTime(label="Data Fine", visible=False, include_time=False, type="datetime")
apply_filter_btn = gr.Button("🔍 Applica Filtro & Aggiorna Analisi", variant="primary")
def toggle_custom_date_pickers(selection):
is_custom = selection == "Intervallo Personalizzato"
return gr.update(visible=is_custom), gr.update(visible=is_custom)
date_filter_selector.change(
fn=toggle_custom_date_pickers,
inputs=[date_filter_selector],
outputs=[custom_start_date_picker, custom_end_date_picker]
)
plot_configs = [
{"label": "Numero di Follower nel Tempo", "id": "followers_count", "section": "Dinamiche dei Follower"},
{"label": "Tasso di Crescita Follower", "id": "followers_growth_rate", "section": "Dinamiche dei Follower"},
{"label": "Follower per Località", "id": "followers_by_location", "section": "Demografia Follower"},
{"label": "Follower per Ruolo (Funzione)", "id": "followers_by_role", "section": "Demografia Follower"},
{"label": "Follower per Settore", "id": "followers_by_industry", "section": "Demografia Follower"},
{"label": "Follower per Anzianità", "id": "followers_by_seniority", "section": "Demografia Follower"},
{"label": "Tasso di Engagement nel Tempo", "id": "engagement_rate", "section": "Approfondimenti Performance Post"},
{"label": "Copertura nel Tempo", "id": "reach_over_time", "section": "Approfondimenti Performance Post"},
{"label": "Visualizzazioni nel Tempo", "id": "impressions_over_time", "section": "Approfondimenti Performance Post"},
{"label": "Reazioni (Like) nel Tempo", "id": "likes_over_time", "section": "Approfondimenti Performance Post"},
{"label": "Click nel Tempo", "id": "clicks_over_time", "section": "Engagement Dettagliato Post nel Tempo"},
{"label": "Condivisioni nel Tempo", "id": "shares_over_time", "section": "Engagement Dettagliato Post nel Tempo"},
{"label": "Commenti nel Tempo", "id": "comments_over_time", "section": "Engagement Dettagliato Post nel Tempo"},
{"label": "Ripartizione Commenti per Sentiment", "id": "comments_sentiment", "section": "Engagement Dettagliato Post nel Tempo"},
{"label": "Frequenza Post", "id": "post_frequency_cs", "section": "Analisi Strategia Contenuti"},
{"label": "Ripartizione Contenuti per Formato", "id": "content_format_breakdown_cs", "section": "Analisi Strategia Contenuti"},
{"label": "Ripartizione Contenuti per Argomenti", "id": "content_topic_breakdown_cs", "section": "Analisi Strategia Contenuti"},
{"label": "Volume Menzioni nel Tempo (Dettaglio)", "id": "mention_analysis_volume", "section": "Analisi Menzioni (Dettaglio)"},
{"label": "Ripartizione Menzioni per Sentiment (Dettaglio)", "id": "mention_analysis_sentiment", "section": "Analisi Menzioni (Dettaglio)"}
]
assert len(plot_configs) == 19, "Mancata corrispondenza in plot_configs e grafici attesi."
active_panel_action_state = gr.State(None)
explored_plot_id_state = gr.State(None)
plot_ui_objects = {}
with gr.Row(equal_height=False):
with gr.Column(scale=8) as plots_area_col:
plot_ui_objects = build_analytics_tab_plot_area(plot_configs)
with gr.Column(scale=4, visible=False) as global_actions_column_ui:
gr.Markdown("### 💡 Azioni Contestuali Grafico")
insights_chatbot_ui = gr.Chatbot(
label="Chat Insights", type="messages", height=450,
bubble_full_width=False, visible=False, show_label=False,
placeholder="L'analisi AI del grafico apparirà qui. Fai domande di approfondimento!"
)
insights_chat_input_ui = gr.Textbox(
label="La tua domanda:", placeholder="Chiedi all'AI riguardo a questo grafico...",
lines=2, visible=False, show_label=False
)
with gr.Row(visible=False) as insights_suggestions_row_ui:
insights_suggestion_1_btn = gr.Button(value="Suggerimento 1", size="sm", min_width=50)
insights_suggestion_2_btn = gr.Button(value="Suggerimento 2", size="sm", min_width=50)
insights_suggestion_3_btn = gr.Button(value="Suggerimento 3", size="sm", min_width=50)
formula_display_markdown_ui = gr.Markdown(
"I dettagli sulla formula/metodologia appariranno qui.", visible=False
)
async def handle_panel_action(
plot_id_clicked: str,
action_type: str,
current_active_action_from_state: dict,
current_chat_histories: dict,
current_chat_plot_id: str
):
logging.info(f"Azione '{action_type}' per grafico: {plot_id_clicked}. Attualmente attivo: {current_active_action_from_state}")
clicked_plot_config = next((p for p in plot_configs if p["id"] == plot_id_clicked), None)
if not clicked_plot_config:
logging.error(f"Configurazione non trovata per plot_id {plot_id_clicked}")
num_button_updates = 2 * len(plot_configs)
error_updates = [gr.update(visible=False)] * 10
error_updates.extend([current_active_action_from_state, current_chat_plot_id, current_chat_histories])
error_updates.extend([gr.update()] * num_button_updates)
return error_updates
clicked_plot_label = clicked_plot_config["label"]
hypothetical_new_active_state = {"plot_id": plot_id_clicked, "type": action_type}
is_toggling_off = current_active_action_from_state == hypothetical_new_active_state
new_active_action_state_to_set = None
action_col_visible_update = gr.update(visible=True)
insights_chatbot_visible_update = gr.update(visible=False)
insights_chat_input_visible_update = gr.update(visible=False)
insights_suggestions_row_visible_update = gr.update(visible=False)
formula_display_visible_update = gr.update(visible=False)
chatbot_content_update = gr.update()
suggestion_1_update = gr.update()
suggestion_2_update = gr.update()
suggestion_3_update = gr.update()
new_current_chat_plot_id = current_chat_plot_id
updated_chat_histories = current_chat_histories
formula_content_update = gr.update()
if is_toggling_off:
new_active_action_state_to_set = None
action_col_visible_update = gr.update(visible=False)
new_current_chat_plot_id = None
logging.info(f"Chiusura pannello {action_type} per {plot_id_clicked}")
else:
new_active_action_state_to_set = hypothetical_new_active_state
if action_type == "insights":
insights_chatbot_visible_update = gr.update(visible=True)
insights_chat_input_visible_update = gr.update(visible=True)
insights_suggestions_row_visible_update = gr.update(visible=True)
new_current_chat_plot_id = plot_id_clicked
chat_history_for_this_plot = current_chat_histories.get(plot_id_clicked, [])
if not chat_history_for_this_plot:
initial_insight_msg, suggestions = get_initial_insight_and_suggestions(plot_id_clicked, clicked_plot_label)
chat_history_for_this_plot = [initial_insight_msg]
updated_chat_histories = current_chat_histories.copy()
updated_chat_histories[plot_id_clicked] = chat_history_for_this_plot
else:
_, suggestions = get_initial_insight_and_suggestions(plot_id_clicked, clicked_plot_label)
chatbot_content_update = gr.update(value=chat_history_for_this_plot)
suggestion_1_update = gr.update(value=suggestions[0])
suggestion_2_update = gr.update(value=suggestions[1])
suggestion_3_update = gr.update(value=suggestions[2])
logging.info(f"Apertura pannello CHAT per {plot_id_clicked} ('{clicked_plot_label}')")
elif action_type == "formula":
formula_display_visible_update = gr.update(visible=True)
formula_key = PLOT_ID_TO_FORMULA_KEY_MAP.get(plot_id_clicked)
formula_text = f"**Formula/Metodologia per: {clicked_plot_label}**\n\nID Grafico: `{plot_id_clicked}`.\n\n"
if formula_key and formula_key in PLOT_FORMULAS:
formula_data = PLOT_FORMULAS[formula_key]
formula_text += f"### {formula_data['title']}\n\n"
formula_text += f"**Descrizione:**\n{formula_data['description']}\n\n"
formula_text += "**Come viene calcolato:**\n"
for step in formula_data['calculation_steps']:
formula_text += f"- {step}\n"
else:
formula_text += "(Nessuna informazione dettagliata sulla formula trovata per questo ID grafico in `formulas.py`)"
formula_content_update = gr.update(value=formula_text)
new_current_chat_plot_id = None
logging.info(f"Apertura pannello FORMULA per {plot_id_clicked} (mappato a {formula_key})")
all_button_icon_updates = []
for cfg_item in plot_configs:
p_id_iter = cfg_item["id"]
if new_active_action_state_to_set == {"plot_id": p_id_iter, "type": "insights"}:
all_button_icon_updates.append(gr.update(value=ACTIVE_ICON))
else:
all_button_icon_updates.append(gr.update(value=BOMB_ICON))
if new_active_action_state_to_set == {"plot_id": p_id_iter, "type": "formula"}:
all_button_icon_updates.append(gr.update(value=ACTIVE_ICON))
else:
all_button_icon_updates.append(gr.update(value=FORMULA_ICON))
final_updates = [
action_col_visible_update,
insights_chatbot_visible_update, chatbot_content_update,
insights_chat_input_visible_update,
insights_suggestions_row_visible_update, suggestion_1_update, suggestion_2_update, suggestion_3_update,
formula_display_visible_update, formula_content_update,
new_active_action_state_to_set,
new_current_chat_plot_id,
updated_chat_histories
] + all_button_icon_updates
return final_updates
async def handle_chat_message_submission(
user_message: str,
current_plot_id: str,
chat_histories: dict,
):
if not current_plot_id or not user_message.strip():
history_for_plot = chat_histories.get(current_plot_id, [])
yield history_for_plot, "", chat_histories
return
plot_config = next((p for p in plot_configs if p["id"] == current_plot_id), None)
plot_label = plot_config["label"] if plot_config else "Grafico Selezionato"
history_for_plot = chat_histories.get(current_plot_id, []).copy()
history_for_plot.append({"role": "user", "content": user_message})
yield history_for_plot, "", chat_histories
bot_response_text = await generate_llm_response(user_message, current_plot_id, plot_label, history_for_plot)
history_for_plot.append({"role": "assistant", "content": bot_response_text})
updated_chat_histories = chat_histories.copy()
updated_chat_histories[current_plot_id] = history_for_plot
yield history_for_plot, "", updated_chat_histories
async def handle_suggested_question_click(
suggestion_text: str,
current_plot_id: str,
chat_histories: dict,
):
if not current_plot_id or not suggestion_text.strip():
history_for_plot = chat_histories.get(current_plot_id, [])
yield history_for_plot, "", chat_histories
return
plot_config = next((p for p in plot_configs if p["id"] == current_plot_id), None)
plot_label = plot_config["label"] if plot_config else "Grafico Selezionato"
history_for_plot = chat_histories.get(current_plot_id, []).copy()
history_for_plot.append({"role": "user", "content": suggestion_text})
yield history_for_plot, "", chat_histories
bot_response_text = await generate_llm_response(suggestion_text, current_plot_id, plot_label, history_for_plot)
history_for_plot.append({"role": "assistant", "content": bot_response_text})
updated_chat_histories = chat_histories.copy()
updated_chat_histories[current_plot_id] = history_for_plot
yield history_for_plot, "", updated_chat_histories
def handle_explore_click(plot_id_clicked, current_explored_plot_id_from_state):
logging.info(f"Click su Esplora per: {plot_id_clicked}. Attualmente esplorato da stato: {current_explored_plot_id_from_state}")
if not plot_ui_objects:
logging.error("plot_ui_objects non popolato durante handle_explore_click.")
updates_for_missing_ui = [current_explored_plot_id_from_state]
for _ in plot_configs:
updates_for_missing_ui.extend([gr.update(), gr.update()])
return updates_for_missing_ui
new_explored_id_to_set = None
is_toggling_off = (plot_id_clicked == current_explored_plot_id_from_state)
if is_toggling_off:
new_explored_id_to_set = None
logging.info(f"Interruzione esplorazione grafico: {plot_id_clicked}")
else:
new_explored_id_to_set = plot_id_clicked
logging.info(f"Esplorazione grafico: {plot_id_clicked}")
panel_and_button_updates = []
for cfg in plot_configs:
p_id = cfg["id"]
if p_id in plot_ui_objects:
panel_visible = not new_explored_id_to_set or (p_id == new_explored_id_to_set)
panel_and_button_updates.append(gr.update(visible=panel_visible))
if p_id == new_explored_id_to_set:
panel_and_button_updates.append(gr.update(value=ACTIVE_ICON))
else:
panel_and_button_updates.append(gr.update(value=EXPLORE_ICON))
else:
panel_and_button_updates.extend([gr.update(), gr.update()])
final_updates = [new_explored_id_to_set] + panel_and_button_updates
return final_updates
action_panel_outputs_list = [
global_actions_column_ui,
insights_chatbot_ui, insights_chatbot_ui,
insights_chat_input_ui,
insights_suggestions_row_ui, insights_suggestion_1_btn, insights_suggestion_2_btn, insights_suggestion_3_btn,
formula_display_markdown_ui, formula_display_markdown_ui,
active_panel_action_state,
current_chat_plot_id_st,
chat_histories_st
]
for cfg_item_action in plot_configs:
pid_action = cfg_item_action["id"]
if pid_action in plot_ui_objects:
action_panel_outputs_list.append(plot_ui_objects[pid_action]["bomb_button"])
action_panel_outputs_list.append(plot_ui_objects[pid_action]["formula_button"])
else:
action_panel_outputs_list.extend([None, None])
explore_buttons_outputs_list = [explored_plot_id_state]
for cfg_item_explore in plot_configs:
pid_explore = cfg_item_explore["id"]
if pid_explore in plot_ui_objects:
explore_buttons_outputs_list.append(plot_ui_objects[pid_explore]["panel_component"])
explore_buttons_outputs_list.append(plot_ui_objects[pid_explore]["explore_button"])
else:
explore_buttons_outputs_list.extend([None, None])
action_click_inputs = [
active_panel_action_state,
chat_histories_st,
current_chat_plot_id_st
]
explore_click_inputs = [explored_plot_id_state]
# --- Define async wrapper functions for click handlers ---
async def insights_click_wrapper(current_active_val, current_chats_val, current_chat_pid, p_id):
return await handle_panel_action(p_id, "insights", current_active_val, current_chats_val, current_chat_pid)
async def formula_click_wrapper(current_active_val, current_chats_val, current_chat_pid, p_id):
return await handle_panel_action(p_id, "formula", current_active_val, current_chats_val, current_chat_pid)
# --- End async wrapper functions ---
for config_item in plot_configs:
plot_id = config_item["id"]
# plot_label = config_item["label"] # Not needed here anymore
if plot_id in plot_ui_objects:
ui_obj = plot_ui_objects[plot_id]
# Use a standard lambda to call the async wrapper, capturing p_id
ui_obj["bomb_button"].click(
fn=lambda cav, ccv, ccpid, p=plot_id: insights_click_wrapper(cav, ccv, ccpid, p),
inputs=action_click_inputs,
outputs=action_panel_outputs_list,
api_name=f"action_insights_{plot_id}"
)
ui_obj["formula_button"].click(
fn=lambda cav, ccv, ccpid, p=plot_id: formula_click_wrapper(cav, ccv, ccpid, p),
inputs=action_click_inputs,
outputs=action_panel_outputs_list,
api_name=f"action_formula_{plot_id}"
)
ui_obj["explore_button"].click(
fn=lambda current_explored_val, p_id=plot_id: handle_explore_click(p_id, current_explored_val),
inputs=explore_click_inputs,
outputs=explore_buttons_outputs_list,
api_name=f"action_explore_{plot_id}"
)
else:
logging.warning(f"Oggetto UI per plot_id '{plot_id}' non trovato durante il tentativo di associare i gestori di click.")
chat_submission_outputs = [insights_chatbot_ui, insights_chat_input_ui, chat_histories_st]
insights_chat_input_ui.submit(
fn=handle_chat_message_submission,
inputs=[insights_chat_input_ui, current_chat_plot_id_st, chat_histories_st],
outputs=chat_submission_outputs,
api_name="submit_chat_message"
)
insights_suggestion_1_btn.click(
fn=handle_suggested_question_click,
inputs=[insights_suggestion_1_btn, current_chat_plot_id_st, chat_histories_st],
outputs=chat_submission_outputs,
api_name="click_suggestion_1"
)
insights_suggestion_2_btn.click(
fn=handle_suggested_question_click,
inputs=[insights_suggestion_2_btn, current_chat_plot_id_st, chat_histories_st],
outputs=chat_submission_outputs,
api_name="click_suggestion_2"
)
insights_suggestion_3_btn.click(
fn=handle_suggested_question_click,
inputs=[insights_suggestion_3_btn, current_chat_plot_id_st, chat_histories_st],
outputs=chat_submission_outputs,
api_name="click_suggestion_3"
)
def refresh_all_analytics_ui_elements(current_token_state, date_filter_val, custom_start_val, custom_end_val, current_chat_histories):
logging.info("Aggiornamento di tutti gli elementi UI delle analisi e reset delle azioni/chat.")
plot_generation_results = update_analytics_plots_figures(
current_token_state, date_filter_val, custom_start_val, custom_end_val
)
status_message_update = plot_generation_results[0]
generated_plot_figures = plot_generation_results[1:]
all_updates = [status_message_update]
for i in range(len(plot_configs)):
if i < len(generated_plot_figures):
all_updates.append(generated_plot_figures[i])
else:
all_updates.append(create_placeholder_plot("Errore Figura", f"Figura mancante per grafico {plot_configs[i]['id']}"))
all_updates.extend([
gr.update(visible=False),
gr.update(value=[], visible=False),
gr.update(value="", visible=False),
gr.update(visible=False),
gr.update(value="Suggerimento 1", visible=True),
gr.update(value="Suggerimento 2", visible=True),
gr.update(value="Suggerimento 3", visible=True),
gr.update(value="I dettagli sulla formula/metodologia appariranno qui.", visible=False),
None,
None,
current_chat_histories,
])
for cfg in plot_configs:
pid = cfg["id"]
if pid in plot_ui_objects:
all_updates.append(gr.update(value=BOMB_ICON))
all_updates.append(gr.update(value=FORMULA_ICON))
all_updates.append(gr.update(value=EXPLORE_ICON))
all_updates.append(gr.update(visible=True))
else:
all_updates.extend([None, None, None, None])
all_updates.append(None)
logging.info(f"Preparati {len(all_updates)} aggiornamenti per il refresh completo delle analisi.")
return all_updates
apply_filter_and_sync_outputs_list = [analytics_status_md]
for config_item_filter_sync in plot_configs:
pid_filter_sync = config_item_filter_sync["id"]
if pid_filter_sync in plot_ui_objects and "plot_component" in plot_ui_objects[pid_filter_sync]:
apply_filter_and_sync_outputs_list.append(plot_ui_objects[pid_filter_sync]["plot_component"])
else:
apply_filter_and_sync_outputs_list.append(None)
apply_filter_and_sync_outputs_list.extend([
global_actions_column_ui,
insights_chatbot_ui,
insights_chat_input_ui,
insights_suggestions_row_ui,
insights_suggestion_1_btn,
insights_suggestion_2_btn,
insights_suggestion_3_btn,
formula_display_markdown_ui,
active_panel_action_state,
current_chat_plot_id_st,
chat_histories_st
])
for cfg_filter_sync_btns in plot_configs:
pid_filter_sync_btns = cfg_filter_sync_btns["id"]
if pid_filter_sync_btns in plot_ui_objects:
apply_filter_and_sync_outputs_list.append(plot_ui_objects[pid_filter_sync_btns]["bomb_button"])
apply_filter_and_sync_outputs_list.append(plot_ui_objects[pid_filter_sync_btns]["formula_button"])
apply_filter_and_sync_outputs_list.append(plot_ui_objects[pid_filter_sync_btns]["explore_button"])
apply_filter_and_sync_outputs_list.append(plot_ui_objects[pid_filter_sync_btns]["panel_component"])
else:
apply_filter_and_sync_outputs_list.extend([None, None, None, None])
apply_filter_and_sync_outputs_list.append(explored_plot_id_state)
logging.info(f"Output totali definiti per apply_filter/sync: {len(apply_filter_and_sync_outputs_list)}")
apply_filter_btn.click(
fn=refresh_all_analytics_ui_elements,
inputs=[token_state, date_filter_selector, custom_start_date_picker, custom_end_date_picker, chat_histories_st],
outputs=apply_filter_and_sync_outputs_list,
show_progress="full"
)
with gr.TabItem("3️⃣ Menzioni", id="tab_mentions"):
refresh_mentions_display_btn = gr.Button("🔄 Aggiorna Visualizzazione Menzioni", variant="secondary")
mentions_html = gr.HTML("Dati menzioni...")
mentions_sentiment_dist_plot = gr.Plot(label="Distribuzione Sentiment Menzioni")
refresh_mentions_display_btn.click(
fn=run_mentions_tab_display, inputs=[token_state],
outputs=[mentions_html, mentions_sentiment_dist_plot],
show_progress="full"
)
with gr.TabItem("4️⃣ Statistiche Follower", id="tab_follower_stats"):
refresh_follower_stats_btn = gr.Button("🔄 Aggiorna Visualizzazione Statistiche Follower", variant="secondary")
follower_stats_html = gr.HTML("Statistiche follower...")
with gr.Row():
fs_plot_monthly_gains = gr.Plot(label="Guadagni Mensili Follower")
with gr.Row():
fs_plot_seniority = gr.Plot(label="Follower per Anzianità (Top 10 Organici)")
fs_plot_industry = gr.Plot(label="Follower per Settore (Top 10 Organici)")
refresh_follower_stats_btn.click(
fn=run_follower_stats_tab_display, inputs=[token_state],
outputs=[follower_stats_html, fs_plot_monthly_gains, fs_plot_seniority, fs_plot_industry],
show_progress="full"
)
sync_event_part1 = sync_data_btn.click(
fn=sync_all_linkedin_data_orchestrator,
inputs=[token_state], outputs=[sync_status_html_output, token_state], show_progress="full"
)
sync_event_part2 = sync_event_part1.then(
fn=process_and_store_bubble_token,
inputs=[url_user_token_display, org_urn_display, token_state],
outputs=[status_box, token_state, sync_data_btn], show_progress=False
)
sync_event_part3 = sync_event_part2.then(
fn=display_main_dashboard,
inputs=[token_state], outputs=[dashboard_display_html], show_progress=False
)
sync_event_final = sync_event_part3.then(
fn=refresh_all_analytics_ui_elements,
inputs=[token_state, date_filter_selector, custom_start_date_picker, custom_end_date_picker, chat_histories_st],
outputs=apply_filter_and_sync_outputs_list,
show_progress="full"
)
if __name__ == "__main__":
if not os.environ.get(LINKEDIN_CLIENT_ID_ENV_VAR):
logging.warning(f"ATTENZIONE: Variabile d'ambiente '{LINKEDIN_CLIENT_ID_ENV_VAR}' non impostata.")
if not os.environ.get(BUBBLE_APP_NAME_ENV_VAR) or \
not os.environ.get(BUBBLE_API_KEY_PRIVATE_ENV_VAR) or \
not os.environ.get(BUBBLE_API_ENDPOINT_ENV_VAR):
logging.warning("ATTENZIONE: Variabili d'ambiente Bubble non completamente impostate.")
try:
logging.info(f"Versione Matplotlib: {matplotlib.__version__}, Backend: {matplotlib.get_backend()}")
except ImportError:
logging.warning("Matplotlib non trovato direttamente, ma potrebbe essere usato dai generatori di grafici.")
app.launch(server_name="0.0.0.0", server_port=7860, debug=True)
|