Spaces:
Running
Running
File size: 35,573 Bytes
b560569 575b933 b0464a9 87a87e7 791c130 266ae82 f7fc39b 575b933 266ae82 4ad44b9 575b933 2a3b22e 575b933 266ae82 ddd95f0 9d99925 3b4dccb 266ae82 3b4dccb 6a8e128 deb2291 266ae82 deb2291 c6716b6 3b4dccb b0464a9 2a3b22e 3b4dccb 2a3b22e 6a8e128 266ae82 6a8e128 deb2291 791c130 3b4dccb a342a6b 575b933 266ae82 3b4dccb 348bc84 791c130 3b4dccb 791c130 266ae82 348bc84 6a8e128 791c130 266ae82 c6716b6 266ae82 6a8e128 266ae82 6a8e128 deb2291 791c130 266ae82 791c130 266ae82 ddd95f0 266ae82 c6716b6 266ae82 6a8e128 266ae82 791c130 575b933 266ae82 791c130 3b4dccb a342a6b b0464a9 2a3b22e adb3bbe 266ae82 179ea1f 67742c4 a342a6b 6a8e128 266ae82 67742c4 adb3bbe a342a6b 6a8e128 575b933 6a8e128 179ea1f a342a6b 575b933 0612e1d 4ad44b9 266ae82 0612e1d adb3bbe 791c130 6a8e128 0612e1d 6a8e128 575b933 a342a6b 2a3b22e 4ad44b9 2a3b22e a342a6b 2a3b22e 791c130 ddd95f0 791c130 6a8e128 791c130 ddd95f0 791c130 6a8e128 791c130 6a8e128 791c130 3b902c0 791c130 266ae82 6a8e128 ddd95f0 6a8e128 ddd95f0 6a8e128 266ae82 ddd95f0 6a8e128 ddd95f0 266ae82 ddd95f0 c6716b6 ddd95f0 266ae82 ddd95f0 266ae82 6a8e128 266ae82 ddd95f0 266ae82 ddd95f0 6a8e128 266ae82 ddd95f0 266ae82 ddd95f0 6a8e128 266ae82 ddd95f0 6a8e128 ddd95f0 6a8e128 ddd95f0 6a8e128 791c130 266ae82 791c130 266ae82 a342a6b adb3bbe 06d22e5 791c130 ddd95f0 266ae82 4ad44b9 266ae82 a342a6b 575b933 791c130 ddd95f0 a342a6b 266ae82 a342a6b 575b933 a342a6b 266ae82 a342a6b 538b42b 791c130 266ae82 ddd95f0 266ae82 ddd95f0 266ae82 ddd95f0 266ae82 ddd95f0 266ae82 adb3bbe 575b933 6a8e128 575b933 6a8e128 a342a6b 6a8e128 a342a6b 791c130 a342a6b 791c130 ddd95f0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 |
import gradio as gr
import pandas as pd
import os
import logging
import matplotlib
matplotlib.use('Agg') # Set backend for Matplotlib to avoid GUI conflicts with Gradio
import matplotlib.pyplot as plt
# --- Module Imports ---
from gradio_utils import get_url_user_token
# Functions from newly created/refactored modules
from config import (
LINKEDIN_CLIENT_ID_ENV_VAR, BUBBLE_APP_NAME_ENV_VAR,
BUBBLE_API_KEY_PRIVATE_ENV_VAR, BUBBLE_API_ENDPOINT_ENV_VAR
)
from state_manager import process_and_store_bubble_token
from sync_logic import sync_all_linkedin_data_orchestrator
from ui_generators import (
display_main_dashboard,
run_mentions_tab_display,
run_follower_stats_tab_display,
build_analytics_tab_plot_area, # Import the updated UI builder
BOMB_ICON, EXPLORE_ICON, FORMULA_ICON, ACTIVE_ICON # Import icons
)
# Corrected import for analytics_data_processing
from analytics_data_processing import prepare_filtered_analytics_data
from analytics_plot_generator import (
generate_posts_activity_plot, generate_engagement_type_plot,
generate_mentions_activity_plot, generate_mention_sentiment_plot,
generate_followers_count_over_time_plot,
generate_followers_growth_rate_plot,
generate_followers_by_demographics_plot,
generate_engagement_rate_over_time_plot,
generate_reach_over_time_plot,
generate_impressions_over_time_plot,
create_placeholder_plot,
generate_likes_over_time_plot,
generate_clicks_over_time_plot,
generate_shares_over_time_plot,
generate_comments_over_time_plot,
generate_comments_sentiment_breakdown_plot,
generate_post_frequency_plot,
generate_content_format_breakdown_plot,
generate_content_topic_breakdown_plot
)
# Configure logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(module)s - %(message)s')
# --- Analytics Tab: Plot Figure Generation Function ---
def update_analytics_plots_figures(token_state_value, date_filter_option, custom_start_date, custom_end_date):
logging.info(f"Updating analytics plot figures. Filter: {date_filter_option}, Custom Start: {custom_start_date}, Custom End: {custom_end_date}")
num_expected_plots = 23
if not token_state_value or not token_state_value.get("token"):
message = "β Access denied. No token. Cannot generate analytics."
logging.warning(message)
placeholder_figs = [create_placeholder_plot(title="Access Denied", message="No token.") for _ in range(num_expected_plots)]
return [message] + placeholder_figs
try:
(filtered_merged_posts_df,
filtered_mentions_df,
date_filtered_follower_stats_df,
raw_follower_stats_df,
start_dt_for_msg, end_dt_for_msg) = \
prepare_filtered_analytics_data(
token_state_value, date_filter_option, custom_start_date, custom_end_date
)
except Exception as e:
error_msg = f"β Error preparing analytics data: {e}"
logging.error(error_msg, exc_info=True)
placeholder_figs = [create_placeholder_plot(title="Data Preparation Error", message=str(e)) for _ in range(num_expected_plots)]
return [error_msg] + placeholder_figs
date_column_posts = token_state_value.get("config_date_col_posts", "published_at")
date_column_mentions = token_state_value.get("config_date_col_mentions", "date")
media_type_col_name = token_state_value.get("config_media_type_col", "media_type")
eb_labels_col_name = token_state_value.get("config_eb_labels_col", "eb_labels")
plot_figs = []
try:
plot_figs.append(generate_posts_activity_plot(filtered_merged_posts_df, date_column=date_column_posts))
plot_figs.append(generate_engagement_type_plot(filtered_merged_posts_df))
fig_mentions_activity_shared = generate_mentions_activity_plot(filtered_mentions_df, date_column=date_column_mentions)
fig_mention_sentiment_shared = generate_mention_sentiment_plot(filtered_mentions_df)
plot_figs.append(fig_mentions_activity_shared)
plot_figs.append(fig_mention_sentiment_shared)
plot_figs.append(generate_followers_count_over_time_plot(date_filtered_follower_stats_df, type_value='follower_gains_monthly'))
plot_figs.append(generate_followers_growth_rate_plot(date_filtered_follower_stats_df, type_value='follower_gains_monthly'))
plot_figs.append(generate_followers_by_demographics_plot(raw_follower_stats_df, type_value='follower_geo', plot_title="Followers by Location"))
plot_figs.append(generate_followers_by_demographics_plot(raw_follower_stats_df, type_value='follower_function', plot_title="Followers by Role"))
plot_figs.append(generate_followers_by_demographics_plot(raw_follower_stats_df, type_value='follower_industry', plot_title="Followers by Industry"))
plot_figs.append(generate_followers_by_demographics_plot(raw_follower_stats_df, type_value='follower_seniority', plot_title="Followers by Seniority"))
plot_figs.append(generate_engagement_rate_over_time_plot(filtered_merged_posts_df, date_column=date_column_posts))
plot_figs.append(generate_reach_over_time_plot(filtered_merged_posts_df, date_column=date_column_posts))
plot_figs.append(generate_impressions_over_time_plot(filtered_merged_posts_df, date_column=date_column_posts))
plot_figs.append(generate_likes_over_time_plot(filtered_merged_posts_df, date_column=date_column_posts))
plot_figs.append(generate_clicks_over_time_plot(filtered_merged_posts_df, date_column=date_column_posts))
plot_figs.append(generate_shares_over_time_plot(filtered_merged_posts_df, date_column=date_column_posts))
plot_figs.append(generate_comments_over_time_plot(filtered_merged_posts_df, date_column=date_column_posts))
plot_figs.append(generate_comments_sentiment_breakdown_plot(filtered_merged_posts_df, sentiment_column='comment_sentiment'))
plot_figs.append(generate_post_frequency_plot(filtered_merged_posts_df, date_column=date_column_posts))
plot_figs.append(generate_content_format_breakdown_plot(filtered_merged_posts_df, format_col=media_type_col_name))
plot_figs.append(generate_content_topic_breakdown_plot(filtered_merged_posts_df, topics_col=eb_labels_col_name))
plot_figs.append(fig_mentions_activity_shared)
plot_figs.append(fig_mention_sentiment_shared)
message = f"π Analytics updated for period: {date_filter_option}"
if date_filter_option == "Custom Range":
s_display = start_dt_for_msg.strftime('%Y-%m-%d') if start_dt_for_msg else "Any"
e_display = end_dt_for_msg.strftime('%Y-%m-%d') if end_dt_for_msg else "Any"
message += f" (From: {s_display} To: {e_display})"
final_plot_figs = []
for i, p_fig in enumerate(plot_figs):
if p_fig is not None and not isinstance(p_fig, str):
final_plot_figs.append(p_fig)
else:
logging.warning(f"Plot figure generation failed or returned unexpected type for slot {i}, using placeholder. Figure: {p_fig}")
final_plot_figs.append(create_placeholder_plot(title="Plot Error", message="Failed to generate this plot figure."))
while len(final_plot_figs) < num_expected_plots:
logging.warning(f"Padding missing plot figure. Expected {num_expected_plots}, got {len(final_plot_figs)}.")
final_plot_figs.append(create_placeholder_plot(title="Missing Plot", message="Plot figure could not be generated."))
return [message] + final_plot_figs[:num_expected_plots]
except Exception as e:
error_msg = f"β Error generating analytics plot figures: {e}"
logging.error(error_msg, exc_info=True)
placeholder_figs = [create_placeholder_plot(title="Plot Generation Error", message=str(e)) for _ in range(num_expected_plots)]
return [error_msg] + placeholder_figs
# --- Gradio UI Blocks ---
with gr.Blocks(theme=gr.themes.Soft(primary_hue="blue", secondary_hue="sky"),
title="LinkedIn Organization Dashboard") as app:
token_state = gr.State(value={
"token": None, "client_id": None, "org_urn": None,
"bubble_posts_df": pd.DataFrame(), "bubble_post_stats_df": pd.DataFrame(),
"bubble_mentions_df": pd.DataFrame(), "bubble_follower_stats_df": pd.DataFrame(),
"fetch_count_for_api": 0, "url_user_token_temp_storage": None,
"config_date_col_posts": "published_at", "config_date_col_mentions": "date",
"config_date_col_followers": "date", "config_media_type_col": "media_type",
"config_eb_labels_col": "eb_labels"
})
gr.Markdown("# π LinkedIn Organization Dashboard")
url_user_token_display = gr.Textbox(label="User Token (Hidden)", interactive=False, visible=False)
status_box = gr.Textbox(label="Overall LinkedIn Token Status", interactive=False, value="Initializing...")
org_urn_display = gr.Textbox(label="Organization URN (Hidden)", interactive=False, visible=False)
app.load(fn=get_url_user_token, inputs=None, outputs=[url_user_token_display, org_urn_display], api_name="get_url_params", show_progress=False)
def initial_load_sequence(url_token, org_urn_val, current_state):
status_msg, new_state, btn_update = process_and_store_bubble_token(url_token, org_urn_val, current_state)
dashboard_content = display_main_dashboard(new_state)
return status_msg, new_state, btn_update, dashboard_content
with gr.Tabs() as tabs:
with gr.TabItem("1οΈβ£ Dashboard & Sync", id="tab_dashboard_sync"):
gr.Markdown("System checks for existing data from Bubble. 'Sync' activates if new data is needed.")
sync_data_btn = gr.Button("π Sync LinkedIn Data", variant="primary", visible=False, interactive=False)
sync_status_html_output = gr.HTML("<p style='text-align:center;'>Sync status...</p>")
dashboard_display_html = gr.HTML("<p style='text-align:center;'>Dashboard loading...</p>")
org_urn_display.change(
fn=initial_load_sequence,
inputs=[url_user_token_display, org_urn_display, token_state],
outputs=[status_box, token_state, sync_data_btn, dashboard_display_html],
show_progress="full"
)
with gr.TabItem("2οΈβ£ Analytics", id="tab_analytics"):
gr.Markdown("## π LinkedIn Performance Analytics")
gr.Markdown("Select a date range. Click buttons for actions.")
analytics_status_md = gr.Markdown("Analytics status...")
with gr.Row():
date_filter_selector = gr.Radio(
["All Time", "Last 7 Days", "Last 30 Days", "Custom Range"],
label="Select Date Range", value="Last 30 Days", scale=3
)
with gr.Column(scale=2):
custom_start_date_picker = gr.DateTime(label="Start Date", visible=False, include_time=False, type="datetime")
custom_end_date_picker = gr.DateTime(label="End Date", visible=False, include_time=False, type="datetime")
apply_filter_btn = gr.Button("π Apply Filter & Refresh Analytics", variant="primary")
def toggle_custom_date_pickers(selection):
is_custom = selection == "Custom Range"
return gr.update(visible=is_custom), gr.update(visible=is_custom)
date_filter_selector.change(
fn=toggle_custom_date_pickers,
inputs=[date_filter_selector],
outputs=[custom_start_date_picker, custom_end_date_picker]
)
plot_configs = [
{"label": "Posts Activity Over Time", "id": "posts_activity", "section": "Posts & Engagement Overview"},
{"label": "Post Engagement Types", "id": "engagement_type", "section": "Posts & Engagement Overview"},
{"label": "Mentions Activity Over Time", "id": "mentions_activity", "section": "Mentions Overview"},
{"label": "Mention Sentiment Distribution", "id": "mention_sentiment", "section": "Mentions Overview"},
{"label": "Followers Count Over Time", "id": "followers_count", "section": "Follower Dynamics"},
{"label": "Followers Growth Rate", "id": "followers_growth_rate", "section": "Follower Dynamics"},
{"label": "Followers by Location", "id": "followers_by_location", "section": "Follower Demographics"},
{"label": "Followers by Role (Function)", "id": "followers_by_role", "section": "Follower Demographics"},
{"label": "Followers by Industry", "id": "followers_by_industry", "section": "Follower Demographics"},
{"label": "Followers by Seniority", "id": "followers_by_seniority", "section": "Follower Demographics"},
{"label": "Engagement Rate Over Time", "id": "engagement_rate", "section": "Post Performance Insights"},
{"label": "Reach Over Time (Clicks)", "id": "reach_over_time", "section": "Post Performance Insights"},
{"label": "Impressions Over Time", "id": "impressions_over_time", "section": "Post Performance Insights"},
{"label": "Reactions (Likes) Over Time", "id": "likes_over_time", "section": "Post Performance Insights"},
{"label": "Clicks Over Time", "id": "clicks_over_time", "section": "Detailed Post Engagement Over Time"},
{"label": "Shares Over Time", "id": "shares_over_time", "section": "Detailed Post Engagement Over Time"},
{"label": "Comments Over Time", "id": "comments_over_time", "section": "Detailed Post Engagement Over Time"},
{"label": "Breakdown of Comments by Sentiment", "id": "comments_sentiment", "section": "Detailed Post Engagement Over Time"},
{"label": "Post Frequency", "id": "post_frequency_cs", "section": "Content Strategy Analysis"},
{"label": "Breakdown of Content by Format", "id": "content_format_breakdown_cs", "section": "Content Strategy Analysis"},
{"label": "Breakdown of Content by Topics", "id": "content_topic_breakdown_cs", "section": "Content Strategy Analysis"},
{"label": "Mentions Volume Over Time (Detailed)", "id": "mention_analysis_volume", "section": "Mention Analysis (Detailed)"},
{"label": "Breakdown of Mentions by Sentiment (Detailed)", "id": "mention_analysis_sentiment", "section": "Mention Analysis (Detailed)"}
]
assert len(plot_configs) == 23, "Mismatch in plot_configs and expected plots."
# --- State for Analytics Tab interactivity ---
# Stores {"plot_id": "action_type"} e.g. {"posts_activity": "insights"} or None
active_panel_action_state = gr.State(None)
# Stores plot_id of the currently explored plot, or None
explored_plot_id_state = gr.State(None)
with gr.Row(equal_height=False):
with gr.Column(scale=8) as plots_area_col:
plot_ui_objects = build_analytics_tab_plot_area(plot_configs)
with gr.Column(scale=4, visible=False) as global_actions_column_ui: # Renamed for clarity
gr.Markdown("### π‘ Generated Content") # More generic title
global_actions_markdown_ui = gr.Markdown("Click a button (π£, Ζ) on a plot to see content here.")
# --- Event Handler for Insights and Formula Buttons ---
def handle_panel_action(plot_id_clicked, action_type, current_active_action, token_state_val):
logging.info(f"Action '{action_type}' for plot: {plot_id_clicked}. Current active: {current_active_action}")
clicked_plot_label = plot_ui_objects.get(plot_id_clicked, {}).get("label", "Selected Plot")
# Determine new state for the action panel
new_active_action_state = {"plot_id": plot_id_clicked, "type": action_type}
is_toggling_off = current_active_action == new_active_action_state
content_text = ""
action_col_visible = False
# Button icon updates - prepare a list of gr.update for all buttons
button_updates = {} # Dict to hold updates for gr.Button objects
if is_toggling_off:
new_active_action_state = None
content_text = f"{action_type.capitalize()} for {clicked_plot_label} hidden."
action_col_visible = False
logging.info(f"Closing {action_type} panel for {plot_id_clicked}")
# Reset the clicked button to its original icon
if action_type == "insights":
button_updates[plot_ui_objects[plot_id_clicked]["bomb_button"]] = gr.update(value=BOMB_ICON)
elif action_type == "formula":
button_updates[plot_ui_objects[plot_id_clicked]["formula_button"]] = gr.update(value=FORMULA_ICON)
else: # Activating or switching
action_col_visible = True
if action_type == "insights":
# TODO: Implement actual insight generation
content_text = f"**Insights for: {clicked_plot_label}**\n\nPlot ID: `{plot_id_clicked}`.\nDetailed AI insights here."
button_updates[plot_ui_objects[plot_id_clicked]["bomb_button"]] = gr.update(value=ACTIVE_ICON)
elif action_type == "formula":
# TODO: Implement actual formula display
content_text = f"**Formula/Methodology for: {clicked_plot_label}**\n\nPlot ID: `{plot_id_clicked}`.\nMethodology details here."
button_updates[plot_ui_objects[plot_id_clicked]["formula_button"]] = gr.update(value=ACTIVE_ICON)
logging.info(f"Opening {action_type} panel for {plot_id_clicked}")
# Reset other action buttons for the *same* plot if a new action is chosen for it
# And reset all buttons if switching plots or toggling off
for pid, ui_obj in plot_ui_objects.items():
is_current_plot_active_bomb = new_active_action_state == {"plot_id": pid, "type": "insights"}
is_current_plot_active_formula = new_active_action_state == {"plot_id": pid, "type": "formula"}
if ui_obj["bomb_button"] not in button_updates: # Avoid overwriting the primary clicked button's update
button_updates[ui_obj["bomb_button"]] = gr.update(value=BOMB_ICON if not is_current_plot_active_bomb else ACTIVE_ICON)
if ui_obj["formula_button"] not in button_updates:
button_updates[ui_obj["formula_button"]] = gr.update(value=FORMULA_ICON if not is_current_plot_active_formula else ACTIVE_ICON)
# Construct the list of updates for Gradio
# Order: global_actions_column_ui, global_actions_markdown_ui, active_panel_action_state, then all button updates
final_updates = [
gr.update(visible=action_col_visible),
gr.update(value=content_text),
new_active_action_state
]
# Add button updates in a consistent order (e.g., order of plot_configs)
for cfg in plot_configs:
p_id = cfg["id"]
if p_id in plot_ui_objects:
# Append updates for bomb, explore, formula buttons for this plot_id
# Ensure explore button is handled by its own handler or reset here if needed
if plot_ui_objects[p_id]["bomb_button"] in button_updates:
final_updates.append(button_updates[plot_ui_objects[p_id]["bomb_button"]])
else: # Default reset if not specifically handled
final_updates.append(gr.update(value=BOMB_ICON))
# Explore button is handled separately, but ensure it's in the output list
# For now, we'll let its own handler manage its state, or reset it if another action occurs.
# This part needs careful thought for interactions between explore and other actions.
# Let's assume for now that activating insights/formula doesn't auto-close explore.
# We will need to add explore_button to the output list.
# For now, this handler focuses on insights/formula buttons.
# We'll need to expand the output list.
if plot_ui_objects[p_id]["formula_button"] in button_updates:
final_updates.append(button_updates[plot_ui_objects[p_id]["formula_button"]])
else: # Default reset
final_updates.append(gr.update(value=FORMULA_ICON))
return final_updates
# --- Event Handler for Explore Button ---
def handle_explore_click(plot_id_clicked, current_explored_plot_id):
logging.info(f"Explore clicked for: {plot_id_clicked}. Currently explored: {current_explored_plot_id}")
panel_visibility_updates = {} # {panel_component: gr.update}
button_icon_updates = {} # {button_component: gr.update}
new_explored_id = None
is_toggling_off = (plot_id_clicked == current_explored_plot_id)
if is_toggling_off:
new_explored_id = None
button_icon_updates[plot_ui_objects[plot_id_clicked]["explore_button"]] = gr.update(value=EXPLORE_ICON)
logging.info(f"Un-exploring plot: {plot_id_clicked}")
else:
new_explored_id = plot_id_clicked
button_icon_updates[plot_ui_objects[plot_id_clicked]["explore_button"]] = gr.update(value=ACTIVE_ICON)
# If another plot was explored, reset its button
if current_explored_plot_id and current_explored_plot_id != plot_id_clicked:
button_icon_updates[plot_ui_objects[current_explored_plot_id]["explore_button"]] = gr.update(value=EXPLORE_ICON)
logging.info(f"Exploring plot: {plot_id_clicked}")
# Determine visibility for all panels
for i in range(0, len(plot_configs), 2):
config1_id = plot_configs[i]["id"]
panel1 = plot_ui_objects[config1_id]["panel_component"]
show_panel1 = True
if new_explored_id: # If any plot is explored
show_panel1 = (config1_id == new_explored_id)
panel_visibility_updates[panel1] = gr.update(visible=show_panel1)
if i + 1 < len(plot_configs):
config2_id = plot_configs[i+1]["id"]
# Only process second panel if it's in the same section as the first
if plot_configs[i+1]["section"] == plot_configs[i]["section"]:
panel2 = plot_ui_objects[config2_id]["panel_component"]
show_panel2 = True
if new_explored_id: # If any plot is explored
show_panel2 = (config2_id == new_explored_id)
# If panel1 is explored, panel2 in the same row should be hidden unless panel2 is the one being explored
if config1_id == new_explored_id and config2_id != new_explored_id :
show_panel2 = False
elif config2_id == new_explored_id and config1_id != new_explored_id:
show_panel1 = False # Re-evaluate panel1 if panel2 is explored
panel_visibility_updates[panel1] = gr.update(visible=show_panel1)
panel_visibility_updates[panel2] = gr.update(visible=show_panel2)
# else: panel2 is in a new section, will be handled when its turn comes as config1_id
# Construct final updates list
# Order: explored_plot_id_state, then all panel visibility, then all explore button icons
final_updates = [new_explored_id]
for cfg in plot_configs:
p_id = cfg["id"]
if p_id in plot_ui_objects:
panel = plot_ui_objects[p_id]["panel_component"]
final_updates.append(panel_visibility_updates.get(panel, gr.update())) # Default no change if not in updates
explore_btn = plot_ui_objects[p_id]["explore_button"]
final_updates.append(button_icon_updates.get(explore_btn, gr.update(value=EXPLORE_ICON))) # Default to original icon
return final_updates
# --- Connect Action Buttons ---
# Outputs for Insights/Formula: global_actions_column_ui, global_actions_markdown_ui, active_panel_action_state, + all bomb_buttons, + all formula_buttons
action_buttons_outputs = [
global_actions_column_ui,
global_actions_markdown_ui,
active_panel_action_state
]
# Add all bomb and formula buttons to the output list for icon updates
for cfg in plot_configs:
pid = cfg["id"]
if pid in plot_ui_objects:
action_buttons_outputs.append(plot_ui_objects[pid]["bomb_button"])
action_buttons_outputs.append(plot_ui_objects[pid]["formula_button"])
# Outputs for Explore: explored_plot_id_state, + all panel_components, + all explore_buttons
explore_buttons_outputs = [explored_plot_id_state]
for cfg in plot_configs:
pid = cfg["id"]
if pid in plot_ui_objects:
explore_buttons_outputs.append(plot_ui_objects[pid]["panel_component"])
explore_buttons_outputs.append(plot_ui_objects[pid]["explore_button"])
for config_item in plot_configs:
plot_id = config_item["id"]
if plot_id in plot_ui_objects:
ui_obj = plot_ui_objects[plot_id]
ui_obj["bomb_button"].click(
fn=lambda p_id=plot_id: handle_panel_action(p_id, "insights", active_panel_action_state.value, token_state.value), # Use .value for state in lambda
inputs=None, # Inputs are passed via lambda closure and state.value
outputs=action_buttons_outputs,
api_name=f"action_insights_{plot_id}"
)
ui_obj["formula_button"].click(
fn=lambda p_id=plot_id: handle_panel_action(p_id, "formula", active_panel_action_state.value, token_state.value),
inputs=None,
outputs=action_buttons_outputs,
api_name=f"action_formula_{plot_id}"
)
ui_obj["explore_button"].click(
fn=lambda p_id=plot_id: handle_explore_click(p_id, explored_plot_id_state.value),
inputs=None,
outputs=explore_buttons_outputs,
api_name=f"action_explore_{plot_id}"
)
# --- Function to Refresh All Analytics UI ---
def refresh_all_analytics_ui_elements(current_token_state, date_filter_val, custom_start_val, custom_end_val):
logging.info("Refreshing all analytics UI elements and resetting actions.")
plot_generation_results = update_analytics_plots_figures(
current_token_state, date_filter_val, custom_start_val, custom_end_val
)
status_message_update = plot_generation_results[0]
generated_plot_figures = plot_generation_results[1:]
all_updates = [status_message_update] # For analytics_status_md
# Plot figure updates
for i, config in enumerate(plot_configs):
p_id_key = config["id"]
if p_id_key in plot_ui_objects:
if i < len(generated_plot_figures):
all_updates.append(generated_plot_figures[i])
else:
all_updates.append(create_placeholder_plot("Figure Error", f"No figure for {p_id_key}"))
else:
all_updates.append(None) # Placeholder if UI object doesn't exist
# Reset Global Action Column
all_updates.append(gr.update(visible=False))
all_updates.append(gr.update(value="Click a button (π£, Ζ) on a plot..."))
all_updates.append(None) # Reset active_panel_action_state
# Reset all button icons (bomb, formula, explore) and panel visibility for explore
for cfg in plot_configs:
pid = cfg["id"]
if pid in plot_ui_objects:
all_updates.append(gr.update(value=BOMB_ICON)) # bomb_button
all_updates.append(gr.update(value=FORMULA_ICON)) # formula_button
all_updates.append(gr.update(value=EXPLORE_ICON)) # explore_button
all_updates.append(gr.update(visible=True)) # panel_component (for explore reset)
else: # Add placeholders if UI object doesn't exist to keep list length
all_updates.extend([None,None,None,None])
all_updates.append(None) # Reset explored_plot_id_state
logging.info(f"Prepared {len(all_updates)} updates for analytics refresh.")
return all_updates
# --- Define outputs for the apply_filter_btn and sync.then() ---
apply_filter_and_sync_outputs = [analytics_status_md]
for config in plot_configs: # Plot components
pid = config["id"]
apply_filter_and_sync_outputs.append(plot_ui_objects[pid]["plot_component"] if pid in plot_ui_objects else None)
apply_filter_and_sync_outputs.extend([ # Global action column and its state
global_actions_column_ui,
global_actions_markdown_ui,
active_panel_action_state
])
# Add all button components and panel components for reset
for cfg in plot_configs:
pid = cfg["id"]
if pid in plot_ui_objects:
apply_filter_and_sync_outputs.append(plot_ui_objects[pid]["bomb_button"])
apply_filter_and_sync_outputs.append(plot_ui_objects[pid]["formula_button"])
apply_filter_and_sync_outputs.append(plot_ui_objects[pid]["explore_button"])
apply_filter_and_sync_outputs.append(plot_ui_objects[pid]["panel_component"])
else:
apply_filter_and_sync_outputs.extend([None,None,None,None])
apply_filter_and_sync_outputs.append(explored_plot_id_state)
logging.info(f"Total outputs for apply_filter/sync: {len(apply_filter_and_sync_outputs)}")
apply_filter_btn.click(
fn=refresh_all_analytics_ui_elements,
inputs=[token_state, date_filter_selector, custom_start_date_picker, custom_end_date_picker],
outputs=apply_filter_and_sync_outputs,
show_progress="full"
)
with gr.TabItem("3οΈβ£ Mentions", id="tab_mentions"):
refresh_mentions_display_btn = gr.Button("π Refresh Mentions Display", variant="secondary")
mentions_html = gr.HTML("Mentions data...")
mentions_sentiment_dist_plot = gr.Plot(label="Mention Sentiment Distribution")
refresh_mentions_display_btn.click(
fn=run_mentions_tab_display, inputs=[token_state],
outputs=[mentions_html, mentions_sentiment_dist_plot],
show_progress="full"
)
with gr.TabItem("4οΈβ£ Follower Stats", id="tab_follower_stats"):
refresh_follower_stats_btn = gr.Button("π Refresh Follower Stats Display", variant="secondary")
follower_stats_html = gr.HTML("Follower statistics...")
with gr.Row():
fs_plot_monthly_gains = gr.Plot(label="Monthly Follower Gains")
with gr.Row():
fs_plot_seniority = gr.Plot(label="Followers by Seniority (Top 10 Organic)")
fs_plot_industry = gr.Plot(label="Followers by Industry (Top 10 Organic)")
refresh_follower_stats_btn.click(
fn=run_follower_stats_tab_display, inputs=[token_state],
outputs=[follower_stats_html, fs_plot_monthly_gains, fs_plot_seniority, fs_plot_industry],
show_progress="full"
)
sync_event_part1 = sync_data_btn.click(
fn=sync_all_linkedin_data_orchestrator,
inputs=[token_state], outputs=[sync_status_html_output, token_state], show_progress="full"
)
sync_event_part2 = sync_event_part1.then(
fn=process_and_store_bubble_token,
inputs=[url_user_token_display, org_urn_display, token_state],
outputs=[status_box, token_state, sync_data_btn], show_progress=False
)
sync_event_part3 = sync_event_part2.then(
fn=display_main_dashboard,
inputs=[token_state], outputs=[dashboard_display_html], show_progress=False
)
sync_event_final = sync_event_part3.then(
fn=refresh_all_analytics_ui_elements,
inputs=[token_state, date_filter_selector, custom_start_date_picker, custom_end_date_picker],
outputs=apply_filter_and_sync_outputs, show_progress="full"
)
if __name__ == "__main__":
if not os.environ.get(LINKEDIN_CLIENT_ID_ENV_VAR):
logging.warning(f"WARNING: '{LINKEDIN_CLIENT_ID_ENV_VAR}' env var not set.")
if not os.environ.get(BUBBLE_APP_NAME_ENV_VAR) or \
not os.environ.get(BUBBLE_API_KEY_PRIVATE_ENV_VAR) or \
not os.environ.get(BUBBLE_API_ENDPOINT_ENV_VAR):
logging.warning("WARNING: Bubble env vars not fully set.")
try:
logging.info(f"Matplotlib version: {matplotlib.__version__}, Backend: {matplotlib.get_backend()}")
except ImportError:
logging.error("Matplotlib is not installed. Plots will not be generated.")
app.launch(server_name="0.0.0.0", server_port=7860, debug=True)
|