File size: 12,970 Bytes
b560569
575b933
b0464a9
87a87e7
791c130
 
 
 
 
f7fc39b
575b933
791c130
4ad44b9
575b933
 
 
 
2a3b22e
575b933
 
 
 
 
 
9d99925
791c130
 
 
b0464a9
2a3b22e
 
 
791c130
 
 
 
 
 
575b933
791c130
 
 
 
a342a6b
791c130
575b933
791c130
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
575b933
791c130
 
 
a342a6b
b0464a9
2a3b22e
adb3bbe
a342a6b
179ea1f
67742c4
a342a6b
575b933
a342a6b
575b933
791c130
 
 
 
67742c4
adb3bbe
a342a6b
575b933
 
f9d8231
179ea1f
a342a6b
575b933
0612e1d
 
4ad44b9
0612e1d
 
adb3bbe
791c130
 
a342a6b
0612e1d
 
575b933
a342a6b
2a3b22e
4ad44b9
2a3b22e
a342a6b
 
2a3b22e
791c130
 
0612e1d
575b933
791c130
0612e1d
575b933
791c130
 
 
 
4ad44b9
791c130
4ad44b9
a342a6b
 
faf26ff
575b933
791c130
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a342a6b
adb3bbe
06d22e5
791c130
 
a342a6b
 
791c130
4ad44b9
 
a342a6b
 
 
575b933
791c130
a342a6b
 
 
791c130
a342a6b
 
575b933
a342a6b
 
 
 
 
538b42b
791c130
575b933
adb3bbe
575b933
791c130
575b933
 
 
791c130
a342a6b
 
575b933
a342a6b
791c130
a342a6b
791c130
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
import gradio as gr
import pandas as pd
import os
import logging
import matplotlib
matplotlib.use('Agg') # Set backend for Matplotlib to avoid GUI conflicts with Gradio
import matplotlib.pyplot as plt 
# No longer need timedelta here if all date logic is in analytics_data_processing
# from datetime import datetime, timedelta 

# --- Module Imports ---
from gradio_utils import get_url_user_token 

# Functions from newly created/refactored modules
from config import (
    LINKEDIN_CLIENT_ID_ENV_VAR, BUBBLE_APP_NAME_ENV_VAR,
    BUBBLE_API_KEY_PRIVATE_ENV_VAR, BUBBLE_API_ENDPOINT_ENV_VAR
)
from state_manager import process_and_store_bubble_token
from sync_logic import sync_all_linkedin_data_orchestrator
from ui_generators import (
    display_main_dashboard,
    run_mentions_tab_display,
    run_follower_stats_tab_display
)
import analytics_plot_generators 
# NEW: Import for data processing functions
import analytics_data_processing

# Configure logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')

# --- Analytics Tab: Plot Update Function ---
def update_analytics_plots(token_state_value, date_filter_option, custom_start_date, custom_end_date):
    """
    Prepares analytics data using external processing function and then generates plots.
    """
    logging.info(f"Updating analytics plots. Filter: {date_filter_option}, Custom Start: {custom_start_date}, Custom End: {custom_end_date}")

    if not token_state_value or not token_state_value.get("token"):
        message = "❌ Access denied. No token. Cannot generate analytics."
        logging.warning(message)
        return message, None, None, None, None, None 

    # --- Prepare Data (Moved to analytics_data_processing) ---
    try:
        filtered_posts_df, filtered_mentions_df, follower_stats_df, start_dt_for_msg, end_dt_for_msg = \
            analytics_data_processing.prepare_filtered_analytics_data(
                token_state_value, date_filter_option, custom_start_date, custom_end_date
            )
    except Exception as e:
        error_msg = f"❌ Error preparing analytics data: {e}"
        logging.error(error_msg, exc_info=True)
        return error_msg, None, None, None, None, None

    # Date column names (still needed for plot generators)
    date_column_posts = token_state_value.get("config_date_col_posts", "published_at")
    date_column_mentions = token_state_value.get("config_date_col_mentions", "date")
    date_column_followers = token_state_value.get("config_date_col_followers", "date") 

    logging.info(f"Data for plotting - Filtered posts: {len(filtered_posts_df)} rows, Filtered Mentions: {len(filtered_mentions_df)} rows.")
    logging.info(f"Follower stats (unfiltered by global range): {len(follower_stats_df)} rows.")

    # --- Generate Plots ---
    try:
        plot_posts_activity = analytics_plot_generators.generate_posts_activity_plot(filtered_posts_df, date_column_posts)
        plot_engagement_type = analytics_plot_generators.generate_engagement_type_plot(filtered_posts_df) 
        plot_mentions_activity = analytics_plot_generators.generate_mentions_activity_plot(filtered_mentions_df, date_column_mentions)
        plot_mention_sentiment = analytics_plot_generators.generate_mention_sentiment_plot(filtered_mentions_df) 
        plot_follower_growth = analytics_plot_generators.generate_follower_growth_plot(follower_stats_df, date_column_followers)

        message = f"πŸ“Š Analytics updated for period: {date_filter_option}"
        if date_filter_option == "Custom Range":
            s_display = start_dt_for_msg.strftime('%Y-%m-%d') if start_dt_for_msg else "Any"
            e_display = end_dt_for_msg.strftime('%Y-%m-%d') if end_dt_for_msg else "Any" 
            message += f" (From: {s_display} To: {e_display})"
        
        num_plots_generated = sum(1 for p in [plot_posts_activity, plot_engagement_type, plot_mentions_activity, plot_mention_sentiment, plot_follower_growth] if p is not None)
        logging.info(f"Successfully generated {num_plots_generated} plots.")

        return message, plot_posts_activity, plot_engagement_type, plot_mentions_activity, plot_mention_sentiment, plot_follower_growth
    except Exception as e:
        error_msg = f"❌ Error generating analytics plots: {e}"
        logging.error(error_msg, exc_info=True)
        return error_msg, None, None, None, None, None


# --- Gradio UI Blocks ---
with gr.Blocks(theme=gr.themes.Soft(primary_hue="blue", secondary_hue="sky"),
               title="LinkedIn Organization Dashboard") as app:

    token_state = gr.State(value={
        "token": None, "client_id": None, "org_urn": None,
        "bubble_posts_df": pd.DataFrame(), "fetch_count_for_api": 0,
        "bubble_mentions_df": pd.DataFrame(),
        "bubble_follower_stats_df": pd.DataFrame(),
        "url_user_token_temp_storage": None,
        "config_date_col_posts": "published_at", 
        "config_date_col_mentions": "date",      
        "config_date_col_followers": "date"    
    })

    gr.Markdown("# πŸš€ LinkedIn Organization Dashboard")
    url_user_token_display = gr.Textbox(label="User Token (from URL - Hidden)", interactive=False, visible=False)
    status_box = gr.Textbox(label="Overall LinkedIn Token Status", interactive=False, value="Initializing...")
    org_urn_display = gr.Textbox(label="Organization URN (from URL - Hidden)", interactive=False, visible=False)

    app.load(fn=get_url_user_token, inputs=None, outputs=[url_user_token_display, org_urn_display], api_name="get_url_params", show_progress=False)

    def initial_load_sequence(url_token, org_urn_val, current_state):
        logging.info(f"Initial load sequence triggered. Org URN: {org_urn_val}, URL Token: {'Present' if url_token else 'Absent'}")
        status_msg, new_state, btn_update = process_and_store_bubble_token(url_token, org_urn_val, current_state)
        dashboard_content = display_main_dashboard(new_state)
        return status_msg, new_state, btn_update, dashboard_content

    with gr.Tabs() as tabs:
        with gr.TabItem("1️⃣ Dashboard & Sync", id="tab_dashboard_sync"):
            gr.Markdown("System checks for existing data from Bubble. The 'Sync' button activates if new data needs to be fetched from LinkedIn based on the last sync times and data availability.")
            sync_data_btn = gr.Button("πŸ”„ Sync LinkedIn Data", variant="primary", visible=False, interactive=False)
            sync_status_html_output = gr.HTML("<p style='text-align:center;'>Sync status will appear here.</p>")
            dashboard_display_html = gr.HTML("<p style='text-align:center;'>Dashboard loading...</p>")

            org_urn_display.change(
                fn=initial_load_sequence,
                inputs=[url_user_token_display, org_urn_display, token_state],
                outputs=[status_box, token_state, sync_data_btn, dashboard_display_html],
                show_progress="full"
            )
            
            sync_click_event = sync_data_btn.click(
                fn=sync_all_linkedin_data_orchestrator,
                inputs=[token_state],
                outputs=[sync_status_html_output, token_state], 
                show_progress="full"
            ).then(
                fn=process_and_store_bubble_token, 
                inputs=[url_user_token_display, org_urn_display, token_state], 
                outputs=[status_box, token_state, sync_data_btn], 
                show_progress=False 
            ).then(
                fn=display_main_dashboard, 
                inputs=[token_state],
                outputs=[dashboard_display_html],
                show_progress=False
            )


        with gr.TabItem("2️⃣ Analytics", id="tab_analytics"):
            gr.Markdown("## πŸ“ˆ LinkedIn Performance Analytics")
            gr.Markdown("Select a date range to filter Posts and Mentions analytics. Follower analytics show overall trends and are not affected by this date filter.")
            
            analytics_status_md = gr.Markdown("Analytics status will appear here...")

            with gr.Row():
                date_filter_selector = gr.Radio(
                    ["All Time", "Last 7 Days", "Last 30 Days", "Custom Range"],
                    label="Select Date Range (for Posts & Mentions)",
                    value="Last 30 Days"
                )
                custom_start_date_picker = gr.DatePicker(label="Start Date (Custom)", visible=False)
                custom_end_date_picker = gr.DatePicker(label="End Date (Custom)", visible=False)
            
            apply_filter_btn = gr.Button("πŸ” Apply Filter & Refresh Analytics", variant="primary")

            def toggle_custom_date_pickers(selection):
                return gr.update(visible=selection == "Custom Range"), gr.update(visible=selection == "Custom Range")

            date_filter_selector.change(
                fn=toggle_custom_date_pickers,
                inputs=[date_filter_selector],
                outputs=[custom_start_date_picker, custom_end_date_picker]
            )

            gr.Markdown("### Posts & Engagement Overview (Filtered by Date)")
            with gr.Row():
                posts_activity_plot = gr.Plot(label="Posts Activity Over Time")
                engagement_type_plot = gr.Plot(label="Post Engagement Types")
            
            gr.Markdown("### Mentions Overview (Filtered by Date)")
            with gr.Row():
                mentions_activity_plot = gr.Plot(label="Mentions Activity Over Time")
                mention_sentiment_plot = gr.Plot(label="Mention Sentiment Distribution")

            gr.Markdown("### Follower Overview (Not Filtered by Date Range Selector)")
            with gr.Row():
                follower_growth_plot = gr.Plot(label="Follower Growth Over Time")

            apply_filter_btn.click(
                fn=update_analytics_plots,
                inputs=[token_state, date_filter_selector, custom_start_date_picker, custom_end_date_picker],
                outputs=[analytics_status_md, posts_activity_plot, engagement_type_plot, mentions_activity_plot, mention_sentiment_plot, follower_growth_plot],
                show_progress="full"
            )
            
            sync_click_event.then(
                fn=update_analytics_plots,
                inputs=[token_state, date_filter_selector, custom_start_date_picker, custom_end_date_picker],
                outputs=[analytics_status_md, posts_activity_plot, engagement_type_plot, mentions_activity_plot, mention_sentiment_plot, follower_growth_plot],
                show_progress="full"
            )


        with gr.TabItem("3️⃣ Mentions", id="tab_mentions"):
            refresh_mentions_display_btn = gr.Button("πŸ”„ Refresh Mentions Display (from local data)", variant="secondary")
            mentions_html = gr.HTML("Mentions data loads from Bubble after sync. Click refresh to view current local data.")
            mentions_sentiment_dist_plot = gr.Plot(label="Mention Sentiment Distribution") 
            refresh_mentions_display_btn.click(
                fn=run_mentions_tab_display, inputs=[token_state],
                outputs=[mentions_html, mentions_sentiment_dist_plot],
                show_progress="full"
            )

        with gr.TabItem("4️⃣ Follower Stats", id="tab_follower_stats"):
            refresh_follower_stats_btn = gr.Button("πŸ”„ Refresh Follower Stats Display (from local data)", variant="secondary")
            follower_stats_html = gr.HTML("Follower statistics load from Bubble after sync. Click refresh to view current local data.")
            with gr.Row():
                fs_plot_monthly_gains = gr.Plot(label="Monthly Follower Gains") 
            with gr.Row():
                fs_plot_seniority = gr.Plot(label="Followers by Seniority (Top 10 Organic)")
                fs_plot_industry = gr.Plot(label="Followers by Industry (Top 10 Organic)")

            refresh_follower_stats_btn.click(
                fn=run_follower_stats_tab_display, inputs=[token_state],
                outputs=[follower_stats_html, fs_plot_monthly_gains, fs_plot_seniority, fs_plot_industry],
                show_progress="full"
            )
    

if __name__ == "__main__":
    if not os.environ.get(LINKEDIN_CLIENT_ID_ENV_VAR):
        logging.warning(f"WARNING: '{LINKEDIN_CLIENT_ID_ENV_VAR}' environment variable not set.")
    if not os.environ.get(BUBBLE_APP_NAME_ENV_VAR) or \
       not os.environ.get(BUBBLE_API_KEY_PRIVATE_ENV_VAR) or \
       not os.environ.get(BUBBLE_API_ENDPOINT_ENV_VAR):
        logging.warning("WARNING: Bubble environment variables not fully set.")

    try:
        logging.info(f"Matplotlib version: {matplotlib.__version__} found. Backend: {matplotlib.get_backend()}")
    except ImportError:
        logging.error("Matplotlib is not installed. Plots will not be generated.")

    app.launch(server_name="0.0.0.0", server_port=7860, debug=True)