Spaces:
Running
Running
File size: 10,499 Bytes
575b933 f9d8231 b560569 575b933 b0464a9 87a87e7 f7fc39b 575b933 4ad44b9 575b933 2a3b22e 575b933 9d99925 b0464a9 2a3b22e 575b933 b0464a9 a342a6b b0464a9 a342a6b 575b933 a342a6b 575b933 a342a6b 575b933 a342a6b b0464a9 2a3b22e adb3bbe a342a6b 179ea1f a342a6b 67742c4 a342a6b 575b933 a342a6b 575b933 67742c4 adb3bbe a342a6b 575b933 f9d8231 179ea1f a342a6b 575b933 4ad44b9 575b933 a342a6b 4ad44b9 a342a6b 575b933 4ad44b9 adb3bbe 2a3b22e a342a6b 575b933 a342a6b 2a3b22e 4ad44b9 2a3b22e a342a6b 2a3b22e 575b933 a342a6b 4ad44b9 575b933 a342a6b 575b933 a342a6b 575b933 4ad44b9 a342a6b 4ad44b9 a342a6b faf26ff 575b933 adb3bbe a342a6b 575b933 a342a6b 575b933 a342a6b 575b933 adb3bbe 4ad44b9 a342a6b adb3bbe 06d22e5 538b42b a342a6b 575b933 4ad44b9 a342a6b 575b933 a342a6b 575b933 a342a6b 538b42b 575b933 adb3bbe a342a6b 575b933 a342a6b 575b933 a342a6b 575b933 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 |
# app.py
# -- coding: utf-8 --
import gradio as gr
import pandas as pd
import os
import logging
# --- Module Imports ---
# Functions from your existing/provided custom modules
from analytics_fetch_and_rendering import fetch_and_render_analytics # Assuming this exists
from gradio_utils import get_url_user_token # For fetching URL parameters
# Functions from newly created/refactored modules
from config import (
LINKEDIN_CLIENT_ID_ENV_VAR, BUBBLE_APP_NAME_ENV_VAR,
BUBBLE_API_KEY_PRIVATE_ENV_VAR, BUBBLE_API_ENDPOINT_ENV_VAR
)
from state_manager import process_and_store_bubble_token
from sync_logic import sync_all_linkedin_data_orchestrator
from ui_generators import (
display_main_dashboard,
run_mentions_tab_display,
run_follower_stats_tab_display
)
# Configure logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
# --- Guarded Analytics Fetch ---
def guarded_fetch_analytics(token_state):
"""Guarded call to fetch_and_render_analytics, ensuring token and basic data structures."""
if not token_state or not token_state.get("token"):
logging.warning("Analytics fetch: Access denied. No token.")
# Ensure the number of returned Nones matches the expected number of outputs for the plots
return ("β Access denied. No token.", None, None, None, None, None, None, None)
# Ensure DataFrames are passed, even if empty, to avoid errors in the analytics function
posts_df_analytics = token_state.get("bubble_posts_df", pd.DataFrame())
mentions_df_analytics = token_state.get("bubble_mentions_df", pd.DataFrame())
follower_stats_df_analytics = token_state.get("bubble_follower_stats_df", pd.DataFrame())
logging.info("Calling fetch_and_render_analytics with current token_state data.")
try:
return fetch_and_render_analytics(
token_state.get("client_id"),
token_state.get("token"),
token_state.get("org_urn"),
posts_df_analytics,
mentions_df_analytics,
follower_stats_df_analytics
)
except Exception as e:
logging.error(f"Error in guarded_fetch_analytics calling fetch_and_render_analytics: {e}", exc_info=True)
return (f"β Error fetching analytics: {e}", None, None, None, None, None, None, None)
# --- Gradio UI Blocks ---
with gr.Blocks(theme=gr.themes.Soft(primary_hue="blue", secondary_hue="sky"),
title="LinkedIn Organization Dashboard") as app:
# Central state for holding token, client_id, org_urn, and fetched dataframes
token_state = gr.State(value={
"token": None, "client_id": None, "org_urn": None,
"bubble_posts_df": pd.DataFrame(), "fetch_count_for_api": 0,
"bubble_mentions_df": pd.DataFrame(),
"bubble_follower_stats_df": pd.DataFrame(),
"url_user_token_temp_storage": None
})
gr.Markdown("# π LinkedIn Organization Dashboard")
# Hidden textboxes to capture URL parameters
url_user_token_display = gr.Textbox(label="User Token (from URL - Hidden)", interactive=False, visible=False)
status_box = gr.Textbox(label="Overall LinkedIn Token Status", interactive=False, value="Initializing...")
org_urn_display = gr.Textbox(label="Organization URN (from URL - Hidden)", interactive=False, visible=False)
# Load URL parameters when the Gradio app loads
app.load(fn=get_url_user_token, inputs=None, outputs=[url_user_token_display, org_urn_display], api_name="get_url_params", show_progress=False)
# This function will run after URL params are loaded and org_urn_display changes
def initial_load_sequence(url_token, org_urn_val, current_state):
logging.info(f"Initial load sequence triggered. Org URN: {org_urn_val}, URL Token: {'Present' if url_token else 'Absent'}")
# Process token, fetch Bubble data, determine sync needs
status_msg, new_state, btn_update = process_and_store_bubble_token(url_token, org_urn_val, current_state)
# Display initial dashboard content based on (potentially empty) Bubble data
dashboard_content = display_main_dashboard(new_state)
return status_msg, new_state, btn_update, dashboard_content
with gr.Tabs():
with gr.TabItem("1οΈβ£ Dashboard & Sync"):
gr.Markdown("System checks for existing data from Bubble. The 'Sync' button activates if new data needs to be fetched from LinkedIn based on the last sync times and data availability.")
sync_data_btn = gr.Button("π Sync LinkedIn Data", variant="primary", visible=False, interactive=False)
sync_status_html_output = gr.HTML("<p style='text-align:center;'>Sync status will appear here.</p>")
dashboard_display_html = gr.HTML("<p style='text-align:center;'>Dashboard loading...</p>")
# Chain of events for initial load:
org_urn_display.change(
fn=initial_load_sequence,
inputs=[url_user_token_display, org_urn_display, token_state],
outputs=[status_box, token_state, sync_data_btn, dashboard_display_html],
show_progress="full"
)
# Also trigger initial_load_sequence if url_user_token_display changes (e.g. if it loads after org_urn)
# This helps ensure it runs once both are potentially available.
# Note: `org_urn_display.change` might be sufficient if `get_url_user_token` updates both nearly simultaneously.
# Adding this for robustness, but ensure it doesn't cause unwanted multiple runs if state isn't managed carefully.
# Consider using a flag in token_state if multiple triggers become an issue.
# For now, relying on org_urn_display.change as the primary trigger post-load.
# When Sync button is clicked:
sync_data_btn.click(
fn=sync_all_linkedin_data_orchestrator,
inputs=[token_state],
outputs=[sync_status_html_output, token_state], # token_state is updated here
show_progress="full"
).then(
fn=process_and_store_bubble_token, # Re-check sync status and update button
inputs=[url_user_token_display, org_urn_display, token_state], # Pass current token_state
outputs=[status_box, token_state, sync_data_btn], # token_state updated again
show_progress=False # Typically "full" for user-initiated actions, "minimal" or False for quick updates
).then(
fn=display_main_dashboard, # Refresh dashboard display
inputs=[token_state],
outputs=[dashboard_display_html],
show_progress=False
)
with gr.TabItem("2οΈβ£ Analytics"):
fetch_analytics_btn = gr.Button("π Fetch/Refresh Full Analytics", variant="primary")
follower_count_md = gr.Markdown("Analytics data will load here...")
with gr.Row(): follower_plot, growth_plot = gr.Plot(label="Follower Demographics"), gr.Plot(label="Follower Growth")
with gr.Row(): eng_rate_plot = gr.Plot(label="Engagement Rate")
with gr.Row(): interaction_plot = gr.Plot(label="Post Interactions")
with gr.Row(): eb_plot = gr.Plot(label="Engagement Benchmark")
with gr.Row(): mentions_vol_plot, mentions_sentiment_plot = gr.Plot(label="Mentions Volume"), gr.Plot(label="Mentions Sentiment")
fetch_analytics_btn.click(
fn=guarded_fetch_analytics, inputs=[token_state],
outputs=[follower_count_md, follower_plot, growth_plot, eng_rate_plot,
interaction_plot, eb_plot, mentions_vol_plot, mentions_sentiment_plot],
show_progress="full"
)
with gr.TabItem("3οΈβ£ Mentions"):
refresh_mentions_display_btn = gr.Button("π Refresh Mentions Display (from local data)", variant="secondary")
mentions_html = gr.HTML("Mentions data loads from Bubble after sync. Click refresh to view current local data.")
mentions_sentiment_dist_plot = gr.Plot(label="Mention Sentiment Distribution")
refresh_mentions_display_btn.click(
fn=run_mentions_tab_display, inputs=[token_state],
outputs=[mentions_html, mentions_sentiment_dist_plot],
show_progress="full"
)
with gr.TabItem("4οΈβ£ Follower Stats"):
refresh_follower_stats_btn = gr.Button("π Refresh Follower Stats Display (from local data)", variant="secondary")
follower_stats_html = gr.HTML("Follower statistics load from Bubble after sync. Click refresh to view current local data.")
with gr.Row():
fs_plot_monthly_gains = gr.Plot(label="Monthly Follower Gains")
with gr.Row():
fs_plot_seniority = gr.Plot(label="Followers by Seniority (Top 10 Organic)")
fs_plot_industry = gr.Plot(label="Followers by Industry (Top 10 Organic)")
refresh_follower_stats_btn.click(
fn=run_follower_stats_tab_display, inputs=[token_state],
outputs=[follower_stats_html, fs_plot_monthly_gains, fs_plot_seniority, fs_plot_industry],
show_progress="full"
)
if __name__ == "__main__":
# Check for essential environment variables
if not os.environ.get(LINKEDIN_CLIENT_ID_ENV_VAR):
logging.warning(f"WARNING: '{LINKEDIN_CLIENT_ID_ENV_VAR}' environment variable not set. The app may not function correctly for LinkedIn API calls.")
if not os.environ.get(BUBBLE_APP_NAME_ENV_VAR) or \
not os.environ.get(BUBBLE_API_KEY_PRIVATE_ENV_VAR) or \
not os.environ.get(BUBBLE_API_ENDPOINT_ENV_VAR):
logging.warning("WARNING: One or more Bubble environment variables (BUBBLE_APP_NAME, BUBBLE_API_KEY_PRIVATE, BUBBLE_API_ENDPOINT) are not set. Bubble integration will fail.")
try:
import matplotlib
logging.info(f"Matplotlib version: {matplotlib.__version__} found. Backend: {matplotlib.get_backend()}")
# The backend is now set in ui_generators.py, which is good practice.
except ImportError:
logging.error("Matplotlib is not installed. Plots will not be generated. Please install it: pip install matplotlib")
# Launch the Gradio app
app.launch(server_name="0.0.0.0", server_port=7860, debug=True)
|