Spaces:
Running
Running
File size: 63,235 Bytes
f9d8231 b560569 896ae69 b0464a9 87a87e7 1ba4c1b 4ad44b9 a342a6b f7fc39b 2a3b22e adb3bbe 179ea1f 4ad44b9 2a3b22e a342a6b 2a3b22e 4ad44b9 9d99925 4ad44b9 9d99925 4ad44b9 9d99925 b0464a9 a342a6b 2a3b22e 87b2809 4ad44b9 a342a6b 4ad44b9 a342a6b 4ad44b9 a342a6b 4ad44b9 87b2809 b0464a9 2a3b22e b0464a9 2a3b22e a342a6b 67742c4 2a3b22e f9d8231 a342a6b 67742c4 a342a6b 4ad44b9 a342a6b 4ad44b9 67742c4 4ad44b9 a342a6b 4ad44b9 a342a6b 4ad44b9 2a3b22e a342a6b b0464a9 4ad44b9 2a3b22e a342a6b 2a3b22e f9d8231 67742c4 f9d8231 67742c4 f9d8231 67742c4 a342a6b 2a3b22e 67742c4 2a3b22e a342a6b 2a3b22e 4ad44b9 2a3b22e a342a6b 4ad44b9 a342a6b 4ad44b9 a342a6b 4ad44b9 da4d579 4ad44b9 a342a6b 2a3b22e a342a6b 4ad44b9 a342a6b 2a3b22e a342a6b 87b2809 4ad44b9 a342a6b 87b2809 4ad44b9 67742c4 a342a6b 4ad44b9 a342a6b 67742c4 4ad44b9 a342a6b 67742c4 4ad44b9 a342a6b 67742c4 a342a6b 67742c4 a342a6b 67742c4 4ad44b9 a342a6b 4ad44b9 a342a6b 4ad44b9 a342a6b 4ad44b9 a342a6b 4ad44b9 a342a6b 4ad44b9 a342a6b 4ad44b9 a342a6b 4ad44b9 a342a6b 67742c4 a342a6b 67742c4 3038c7b 4ad44b9 a342a6b 4ad44b9 67742c4 4ad44b9 9f71fb3 67742c4 2a3b22e a342a6b 4ad44b9 a342a6b 4ad44b9 a342a6b 4ad44b9 a342a6b 4ad44b9 a342a6b 4ad44b9 a342a6b 4ad44b9 a342a6b 4ad44b9 a342a6b 4ad44b9 a342a6b 67742c4 a342a6b 4ad44b9 a342a6b 4ad44b9 9d99925 4ad44b9 a342a6b 4ad44b9 87b2809 4ad44b9 a342a6b 4ad44b9 87b2809 a342a6b 87b2809 a342a6b 4ad44b9 9d99925 4ad44b9 a342a6b 4ad44b9 a342a6b 4ad44b9 a342a6b 4ad44b9 a342a6b 4ad44b9 a342a6b 4ad44b9 9d99925 a342a6b 4ad44b9 9f71fb3 a342a6b b0464a9 a342a6b 4ad44b9 a342a6b 4ad44b9 a342a6b 4ad44b9 a342a6b 4ad44b9 a342a6b 4ad44b9 a342a6b 67742c4 a342a6b 4ad44b9 a342a6b 4ad44b9 a342a6b 4ad44b9 a342a6b 4ad44b9 a342a6b 4ad44b9 a342a6b 4ad44b9 a342a6b 4ad44b9 a342a6b 4ad44b9 a342a6b 4ad44b9 a342a6b 4ad44b9 a342a6b 4ad44b9 a342a6b 4ad44b9 a342a6b 4ad44b9 a342a6b 4ad44b9 a342a6b 4ad44b9 a342a6b 4ad44b9 a342a6b 4ad44b9 a342a6b 4ad44b9 a342a6b 4ad44b9 a342a6b 4ad44b9 a342a6b 4ad44b9 a342a6b b0464a9 4cc3230 b0464a9 a342a6b b0464a9 a342a6b b0464a9 4ad44b9 a342a6b 4ad44b9 b0464a9 a342a6b 2a3b22e 4ad44b9 a342a6b 4ad44b9 a342a6b 4ad44b9 a342a6b 4ad44b9 a342a6b 4ad44b9 a342a6b 4ad44b9 a342a6b 4ad44b9 a342a6b 4ad44b9 a342a6b 4ad44b9 a342a6b 4ad44b9 a342a6b b0464a9 2a3b22e adb3bbe a342a6b 179ea1f a342a6b 67742c4 a342a6b 67742c4 adb3bbe a342a6b f9d8231 179ea1f a342a6b 4ad44b9 a342a6b 4ad44b9 a342a6b 4ad44b9 a342a6b 4ad44b9 adb3bbe 2a3b22e a342a6b 2a3b22e 4ad44b9 2a3b22e a342a6b 2a3b22e a342a6b 4ad44b9 a342a6b 67742c4 a342a6b 4ad44b9 a342a6b 4ad44b9 a342a6b faf26ff 67742c4 adb3bbe a342a6b adb3bbe 4ad44b9 a342a6b adb3bbe 06d22e5 538b42b a342a6b 4ad44b9 a342a6b 538b42b 2a3b22e adb3bbe a342a6b 179ea1f a342a6b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 |
# -- coding: utf-8 --
import gradio as gr
import json
import os
import logging
import html
import pandas as pd
from datetime import datetime, timedelta, timezone # Added timezone
# Import functions from your custom modules
from analytics_fetch_and_rendering import fetch_and_render_analytics
from gradio_utils import get_url_user_token
from Bubble_API_Calls import (
fetch_linkedin_token_from_bubble,
bulk_upload_to_bubble,
fetch_linkedin_posts_data_from_bubble # This will be used for posts, mentions, and follower stats
)
from Linkedin_Data_API_Calls import (
fetch_linkedin_posts_core,
fetch_comments,
analyze_sentiment, # For post comments
compile_detailed_posts,
prepare_data_for_bubble, # For posts, stats, comments
fetch_linkedin_mentions_core,
analyze_mentions_sentiment, # For individual mentions
compile_detailed_mentions, # Compiles to user-specified format
prepare_mentions_for_bubble # Prepares user-specified format for Bubble
)
# Import follower stats function
from linkedin_follower_stats import get_linkedin_follower_stats
# Configure logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
# --- Global Constants ---
DEFAULT_INITIAL_FETCH_COUNT = 10
LINKEDIN_POST_URN_KEY = 'id'
BUBBLE_POST_URN_COLUMN_NAME = 'id' # Assuming this is the unique post ID in Bubble
BUBBLE_POST_DATE_COLUMN_NAME = 'published_at' # Assuming this is the post publication date in Bubble
# Constants for Mentions
BUBBLE_MENTIONS_TABLE_NAME = "LI_mentions"
BUBBLE_MENTIONS_ID_COLUMN_NAME = "id" # Assuming this is the unique mention ID in Bubble
BUBBLE_MENTIONS_DATE_COLUMN_NAME = "date" # Assuming this is the mention date in Bubble
DEFAULT_MENTIONS_INITIAL_FETCH_COUNT = 20
DEFAULT_MENTIONS_UPDATE_FETCH_COUNT = 10
# Constants for Follower Stats
BUBBLE_FOLLOWER_STATS_TABLE_NAME = "LI_follower_stats"
FOLLOWER_STATS_CATEGORY_COLUMN = "category_name" # For demographics: name (e.g., "Engineering"), for monthly gains: date string 'YYYY-MM-DD'
FOLLOWER_STATS_TYPE_COLUMN = "follower_count_type" # e.g., "follower_seniority", "follower_gains_monthly"
FOLLOWER_STATS_ORG_URN_COLUMN = "organization_urn" # URN of the organization
FOLLOWER_STATS_ORGANIC_COLUMN = "follower_count_organic"
FOLLOWER_STATS_PAID_COLUMN = "follower_count_paid"
def check_token_status(token_state):
"""Checks the status of the LinkedIn token."""
return "β
Token available" if token_state and token_state.get("token") else "β Token not available"
def process_and_store_bubble_token(url_user_token, org_urn, token_state):
"""
Processes user token, fetches LinkedIn token, fetches existing Bubble data (posts, mentions, follower stats),
and determines if an initial fetch or update is needed for each data type.
Updates token state and UI for the sync button.
"""
logging.info(f"Processing token with URL user token: '{url_user_token}', Org URN: '{org_urn}'")
# Initialize or update state safely
new_state = token_state.copy() if token_state else {
"token": None, "client_id": None, "org_urn": None,
"bubble_posts_df": pd.DataFrame(), "fetch_count_for_api": 0,
"bubble_mentions_df": pd.DataFrame(),
"bubble_follower_stats_df": pd.DataFrame(),
"url_user_token_temp_storage": None
}
new_state.update({
"org_urn": org_urn,
"bubble_posts_df": new_state.get("bubble_posts_df", pd.DataFrame()), # Ensure DF exists
"fetch_count_for_api": new_state.get("fetch_count_for_api", 0),
"bubble_mentions_df": new_state.get("bubble_mentions_df", pd.DataFrame()), # Ensure DF exists
"bubble_follower_stats_df": new_state.get("bubble_follower_stats_df", pd.DataFrame()), # Ensure DF exists
"url_user_token_temp_storage": url_user_token
})
button_update = gr.update(visible=False, interactive=False, value="π Sync LinkedIn Data") # Default to hidden
client_id = os.environ.get("Linkedin_client_id")
new_state["client_id"] = client_id if client_id else "ENV VAR MISSING"
if not client_id: logging.error("CRITICAL ERROR: 'Linkedin_client_id' environment variable not set.")
# Fetch LinkedIn Token from Bubble
if url_user_token and "not found" not in url_user_token and "Could not access" not in url_user_token:
logging.info(f"Attempting to fetch LinkedIn token from Bubble with user token: {url_user_token}")
try:
parsed_linkedin_token = fetch_linkedin_token_from_bubble(url_user_token)
if isinstance(parsed_linkedin_token, dict) and "access_token" in parsed_linkedin_token:
new_state["token"] = parsed_linkedin_token
logging.info("β
LinkedIn Token successfully fetched from Bubble.")
else:
new_state["token"] = None
logging.warning(f"β Failed to fetch a valid LinkedIn token from Bubble. Response: {parsed_linkedin_token}")
except Exception as e:
new_state["token"] = None
logging.error(f"β Exception while fetching LinkedIn token from Bubble: {e}", exc_info=True)
else:
new_state["token"] = None
logging.info("No valid URL user token provided for LinkedIn token fetch, or an error was indicated.")
# Fetch existing data from Bubble if Org URN is available
current_org_urn = new_state.get("org_urn")
if current_org_urn:
# Fetch Posts from Bubble
logging.info(f"Attempting to fetch posts from Bubble for org_urn: {current_org_urn}")
try:
fetched_posts_df, error_message_posts = fetch_linkedin_posts_data_from_bubble(current_org_urn, "LI_posts") # Assuming "LI_posts" is the table name
new_state["bubble_posts_df"] = pd.DataFrame() if error_message_posts or fetched_posts_df is None else fetched_posts_df
if error_message_posts: logging.warning(f"Error fetching LI_posts from Bubble: {error_message_posts}.")
except Exception as e:
logging.error(f"β Error fetching posts from Bubble: {e}.", exc_info=True)
new_state["bubble_posts_df"] = pd.DataFrame()
# Fetch Mentions from Bubble
logging.info(f"Attempting to fetch mentions from Bubble for org_urn: {current_org_urn}")
try:
fetched_mentions_df, error_message_mentions = fetch_linkedin_posts_data_from_bubble(current_org_urn, BUBBLE_MENTIONS_TABLE_NAME)
new_state["bubble_mentions_df"] = pd.DataFrame() if error_message_mentions or fetched_mentions_df is None else fetched_mentions_df
if error_message_mentions: logging.warning(f"Error fetching {BUBBLE_MENTIONS_TABLE_NAME} from Bubble: {error_message_mentions}.")
except Exception as e:
logging.error(f"β Error fetching mentions from Bubble: {e}.", exc_info=True)
new_state["bubble_mentions_df"] = pd.DataFrame()
# Fetch Follower Stats from Bubble
logging.info(f"Attempting to fetch follower stats from Bubble for org_urn: {current_org_urn}")
try:
fetched_follower_stats_df, error_message_fs = fetch_linkedin_posts_data_from_bubble(current_org_urn, BUBBLE_FOLLOWER_STATS_TABLE_NAME)
new_state["bubble_follower_stats_df"] = pd.DataFrame() if error_message_fs or fetched_follower_stats_df is None else fetched_follower_stats_df
if error_message_fs: logging.warning(f"Error fetching {BUBBLE_FOLLOWER_STATS_TABLE_NAME} from Bubble: {error_message_fs}.")
except Exception as e:
logging.error(f"β Error fetching follower stats from Bubble: {e}.", exc_info=True)
new_state["bubble_follower_stats_df"] = pd.DataFrame()
else:
logging.warning("Org URN not available in state. Cannot fetch data from Bubble.")
new_state["bubble_posts_df"] = pd.DataFrame()
new_state["bubble_mentions_df"] = pd.DataFrame()
new_state["bubble_follower_stats_df"] = pd.DataFrame()
# Determine fetch count for Posts API
if new_state["bubble_posts_df"].empty:
logging.info(f"βΉοΈ No posts in Bubble. Setting to fetch initial {DEFAULT_INITIAL_FETCH_COUNT} posts.")
new_state['fetch_count_for_api'] = DEFAULT_INITIAL_FETCH_COUNT
else:
try:
df_posts_check = new_state["bubble_posts_df"].copy() # Use .copy()
if BUBBLE_POST_DATE_COLUMN_NAME not in df_posts_check.columns or df_posts_check[BUBBLE_POST_DATE_COLUMN_NAME].isnull().all():
logging.warning(f"Date column '{BUBBLE_POST_DATE_COLUMN_NAME}' for posts missing or all null values. Triggering initial fetch.")
new_state['fetch_count_for_api'] = DEFAULT_INITIAL_FETCH_COUNT
else:
df_posts_check[BUBBLE_POST_DATE_COLUMN_NAME] = pd.to_datetime(df_posts_check[BUBBLE_POST_DATE_COLUMN_NAME], errors='coerce', utc=True)
last_post_date_utc = df_posts_check[BUBBLE_POST_DATE_COLUMN_NAME].dropna().max()
if pd.isna(last_post_date_utc): # No valid dates found after conversion
logging.warning("No valid post dates found after conversion. Triggering initial fetch.")
new_state['fetch_count_for_api'] = DEFAULT_INITIAL_FETCH_COUNT
else:
days_diff = (pd.Timestamp('now', tz='UTC').normalize() - last_post_date_utc.normalize()).days
if days_diff >= 7:
# Fetch more if data is older, e.g., 10 posts per week of difference
new_state['fetch_count_for_api'] = max(1, days_diff // 7) * 10
logging.info(f"Posts data is {days_diff} days old. Setting fetch count to {new_state['fetch_count_for_api']}.")
else:
new_state['fetch_count_for_api'] = 0 # Data is recent
logging.info("Posts data is recent. No new posts fetch needed based on date.")
except Exception as e:
logging.error(f"Error processing post dates: {e}. Defaulting to initial fetch for posts.", exc_info=True)
new_state['fetch_count_for_api'] = DEFAULT_INITIAL_FETCH_COUNT
# Determine if Mentions need sync
mentions_need_sync = False
if new_state["bubble_mentions_df"].empty:
mentions_need_sync = True
logging.info("Mentions need sync: Bubble mentions DF is empty.")
else:
# Check if the crucial date column exists and has any non-null values
if BUBBLE_MENTIONS_DATE_COLUMN_NAME not in new_state["bubble_mentions_df"].columns or \
new_state["bubble_mentions_df"][BUBBLE_MENTIONS_DATE_COLUMN_NAME].isnull().all():
mentions_need_sync = True
logging.info(f"Mentions need sync: Date column '{BUBBLE_MENTIONS_DATE_COLUMN_NAME}' missing or all null values.")
else:
df_mentions_check = new_state["bubble_mentions_df"].copy() # Use .copy()
df_mentions_check[BUBBLE_MENTIONS_DATE_COLUMN_NAME] = pd.to_datetime(df_mentions_check[BUBBLE_MENTIONS_DATE_COLUMN_NAME], errors='coerce', utc=True)
last_mention_date_utc = df_mentions_check[BUBBLE_MENTIONS_DATE_COLUMN_NAME].dropna().max()
# Sync if no valid last mention date or if it's 7 days or older
if pd.isna(last_mention_date_utc) or \
(pd.Timestamp('now', tz='UTC').normalize() - last_mention_date_utc.normalize()).days >= 7:
mentions_need_sync = True
logging.info(f"Mentions need sync: Last mention date {last_mention_date_utc} is old or invalid.")
else:
logging.info(f"Mentions up-to-date. Last mention: {last_mention_date_utc}")
# Determine if Follower Stats need sync
follower_stats_need_sync = False
fs_df = new_state.get("bubble_follower_stats_df", pd.DataFrame())
if fs_df.empty:
follower_stats_need_sync = True
logging.info("Follower stats need sync: Bubble follower stats DF is empty.")
else:
# Check monthly gains data
monthly_gains_df = fs_df[fs_df[FOLLOWER_STATS_TYPE_COLUMN] == 'follower_gains_monthly'].copy() # Use .copy()
if monthly_gains_df.empty:
follower_stats_need_sync = True
logging.info("Follower stats need sync: No monthly gains data in Bubble.")
elif FOLLOWER_STATS_CATEGORY_COLUMN not in monthly_gains_df.columns:
follower_stats_need_sync = True
logging.info(f"Follower stats need sync: Date column '{FOLLOWER_STATS_CATEGORY_COLUMN}' missing in monthly gains.")
else:
# Ensure date conversion does not raise SettingWithCopyWarning by using .loc
monthly_gains_df.loc[:, FOLLOWER_STATS_CATEGORY_COLUMN] = pd.to_datetime(monthly_gains_df[FOLLOWER_STATS_CATEGORY_COLUMN], errors='coerce').dt.normalize()
last_gain_date = monthly_gains_df[FOLLOWER_STATS_CATEGORY_COLUMN].dropna().max()
if pd.isna(last_gain_date): # No valid dates after conversion
follower_stats_need_sync = True
logging.info("Follower stats need sync: No valid dates in monthly gains after conversion.")
else:
# Sync if the last recorded gain is for a month *before* the start of the current month.
# This ensures we attempt to fetch the previous month's data if it's not there.
start_of_current_month = pd.Timestamp('now', tz='UTC').normalize().replace(day=1)
if last_gain_date < start_of_current_month:
follower_stats_need_sync = True
logging.info(f"Follower stats need sync: Last gain date {last_gain_date} is before current month start {start_of_current_month}.")
else:
logging.info(f"Follower monthly gains up-to-date. Last gain recorded on: {last_gain_date}")
# Also trigger sync if demographic data (non-monthly gains) is missing entirely
# This is a basic check; more granular checks could be added for specific demographic types if needed.
if fs_df[fs_df[FOLLOWER_STATS_TYPE_COLUMN] != 'follower_gains_monthly'].empty:
follower_stats_need_sync = True
logging.info("Follower stats need sync: Demographic data (non-monthly types) missing.")
# Update Sync Button based on token and needed actions
sync_actions = []
if new_state['fetch_count_for_api'] > 0:
sync_actions.append(f"{new_state['fetch_count_for_api']} Posts")
if mentions_need_sync:
sync_actions.append("Mentions")
if follower_stats_need_sync:
sync_actions.append("Follower Stats")
if new_state["token"] and sync_actions: # Token present and actions needed
button_label = f"π Sync LinkedIn Data ({', '.join(sync_actions)})"
button_update = gr.update(value=button_label, visible=True, interactive=True)
elif new_state["token"]: # Token present but nothing to sync
button_label = "β
Data Up-to-Date"
button_update = gr.update(value=button_label, visible=True, interactive=False) # Visible but not interactive
else: # No token
button_update = gr.update(visible=False, interactive=False) # Keep hidden
token_status_message = check_token_status(new_state)
logging.info(f"Token processing complete. Status: {token_status_message}. Button: {button_update}. Sync actions: {sync_actions}")
return token_status_message, new_state, button_update
def sync_linkedin_mentions(token_state):
"""Fetches new LinkedIn mentions and uploads them to Bubble."""
logging.info("Starting LinkedIn mentions sync process.")
if not token_state or not token_state.get("token"):
logging.error("Mentions sync: Access denied. No LinkedIn token.")
return "Mentions: No token. ", token_state
client_id = token_state.get("client_id")
token_dict = token_state.get("token")
org_urn = token_state.get('org_urn')
bubble_mentions_df = token_state.get("bubble_mentions_df", pd.DataFrame()).copy() # Work with a copy
if not org_urn or not client_id or client_id == "ENV VAR MISSING":
logging.error("Mentions sync: Configuration error (Org URN or Client ID missing).")
return "Mentions: Config error. ", token_state
# Determine if mentions sync is needed and how many to fetch
fetch_count_for_mentions_api = 0
mentions_sync_is_needed_now = False
if bubble_mentions_df.empty:
mentions_sync_is_needed_now = True
fetch_count_for_mentions_api = DEFAULT_MENTIONS_INITIAL_FETCH_COUNT
logging.info("Mentions sync needed: Bubble DF empty. Fetching initial count.")
else:
if BUBBLE_MENTIONS_DATE_COLUMN_NAME not in bubble_mentions_df.columns or \
bubble_mentions_df[BUBBLE_MENTIONS_DATE_COLUMN_NAME].isnull().all():
mentions_sync_is_needed_now = True
fetch_count_for_mentions_api = DEFAULT_MENTIONS_INITIAL_FETCH_COUNT
logging.info(f"Mentions sync needed: Date column '{BUBBLE_MENTIONS_DATE_COLUMN_NAME}' missing or all null. Fetching initial count.")
else:
mentions_df_copy = bubble_mentions_df.copy() # Redundant copy, already copied above
mentions_df_copy[BUBBLE_MENTIONS_DATE_COLUMN_NAME] = pd.to_datetime(mentions_df_copy[BUBBLE_MENTIONS_DATE_COLUMN_NAME], errors='coerce', utc=True)
last_mention_date_utc = mentions_df_copy[BUBBLE_MENTIONS_DATE_COLUMN_NAME].dropna().max()
if pd.isna(last_mention_date_utc) or \
(pd.Timestamp('now', tz='UTC').normalize() - last_mention_date_utc.normalize()).days >= 7:
mentions_sync_is_needed_now = True
fetch_count_for_mentions_api = DEFAULT_MENTIONS_UPDATE_FETCH_COUNT # Fetch update count if data is old
logging.info(f"Mentions sync needed: Last mention date {last_mention_date_utc} is old or invalid. Fetching update count.")
if not mentions_sync_is_needed_now:
logging.info("Mentions data is fresh based on current check. No API fetch needed for mentions.")
return "Mentions: Up-to-date. ", token_state
logging.info(f"Mentions sync proceeding. Fetch count: {fetch_count_for_mentions_api}")
try:
processed_raw_mentions = fetch_linkedin_mentions_core(client_id, token_dict, org_urn, count=fetch_count_for_mentions_api)
if not processed_raw_mentions:
logging.info("Mentions sync: No new mentions found via API.")
return "Mentions: None found via API. ", token_state
existing_mention_ids = set()
if not bubble_mentions_df.empty and BUBBLE_MENTIONS_ID_COLUMN_NAME in bubble_mentions_df.columns:
# Ensure IDs are strings for reliable comparison, handling potential NaNs
existing_mention_ids = set(bubble_mentions_df[BUBBLE_MENTIONS_ID_COLUMN_NAME].dropna().astype(str))
sentiments_map = analyze_mentions_sentiment(processed_raw_mentions) # Assumes this returns a map {mention_id: sentiment_data}
all_compiled_mentions = compile_detailed_mentions(processed_raw_mentions, sentiments_map) # Assumes this adds sentiment to each mention dict
# Filter out mentions already in Bubble
new_compiled_mentions_to_upload = [
m for m in all_compiled_mentions if str(m.get("id")) not in existing_mention_ids
]
if not new_compiled_mentions_to_upload:
logging.info("Mentions sync: All fetched mentions are already in Bubble.")
return "Mentions: All fetched already in Bubble. ", token_state
bubble_ready_mentions = prepare_mentions_for_bubble(new_compiled_mentions_to_upload) # Prepare for Bubble format
if bubble_ready_mentions:
bulk_upload_to_bubble(bubble_ready_mentions, BUBBLE_MENTIONS_TABLE_NAME)
logging.info(f"Successfully uploaded {len(bubble_ready_mentions)} new mentions to Bubble.")
# Update in-memory DataFrame
updated_mentions_df = pd.concat([bubble_mentions_df, pd.DataFrame(bubble_ready_mentions)], ignore_index=True)
# Drop duplicates based on ID, keeping the latest (which would be the newly added ones if IDs overlapped, though logic above should prevent this)
token_state["bubble_mentions_df"] = updated_mentions_df.drop_duplicates(subset=[BUBBLE_MENTIONS_ID_COLUMN_NAME], keep='last')
return f"Mentions: Synced {len(bubble_ready_mentions)} new. ", token_state
else:
logging.info("Mentions sync: No new mentions were prepared for Bubble upload (possibly all filtered or empty after prep).")
return "Mentions: No new ones to upload. ", token_state
except ValueError as ve: # Catch specific errors if your API calls raise them
logging.error(f"ValueError during mentions sync: {ve}", exc_info=True)
return f"Mentions Error: {html.escape(str(ve))}. ", token_state
except Exception as e:
logging.exception("Unexpected error in sync_linkedin_mentions.") # Logs full traceback
return f"Mentions: Unexpected error ({type(e).__name__}). ", token_state
def sync_linkedin_follower_stats(token_state):
"""Fetches new LinkedIn follower statistics and uploads them to Bubble."""
logging.info("Starting LinkedIn follower stats sync process.")
if not token_state or not token_state.get("token"):
logging.error("Follower Stats sync: Access denied. No LinkedIn token.")
return "Follower Stats: No token. ", token_state
client_id = token_state.get("client_id")
token_dict = token_state.get("token")
org_urn = token_state.get('org_urn')
if not org_urn or not client_id or client_id == "ENV VAR MISSING":
logging.error("Follower Stats sync: Configuration error (Org URN or Client ID missing).")
return "Follower Stats: Config error. ", token_state
# Determine if follower stats sync is needed (logic copied and adapted from process_and_store_bubble_token)
follower_stats_sync_is_needed_now = False
fs_df_current = token_state.get("bubble_follower_stats_df", pd.DataFrame()).copy() # Work with a copy
if fs_df_current.empty:
follower_stats_sync_is_needed_now = True
logging.info("Follower stats sync needed: Bubble DF is empty.")
else:
monthly_gains_df = fs_df_current[fs_df_current[FOLLOWER_STATS_TYPE_COLUMN] == 'follower_gains_monthly'].copy()
if monthly_gains_df.empty or FOLLOWER_STATS_CATEGORY_COLUMN not in monthly_gains_df.columns:
follower_stats_sync_is_needed_now = True
logging.info("Follower stats sync needed: Monthly gains data missing or date column absent.")
else:
monthly_gains_df.loc[:, FOLLOWER_STATS_CATEGORY_COLUMN] = pd.to_datetime(monthly_gains_df[FOLLOWER_STATS_CATEGORY_COLUMN], errors='coerce').dt.normalize()
last_gain_date = monthly_gains_df[FOLLOWER_STATS_CATEGORY_COLUMN].dropna().max()
start_of_current_month = pd.Timestamp('now', tz='UTC').normalize().replace(day=1)
if pd.isna(last_gain_date) or last_gain_date < start_of_current_month:
follower_stats_sync_is_needed_now = True
logging.info(f"Follower stats sync needed: Last gain date {last_gain_date} is old or invalid.")
if fs_df_current[fs_df_current[FOLLOWER_STATS_TYPE_COLUMN] != 'follower_gains_monthly'].empty:
follower_stats_sync_is_needed_now = True
logging.info("Follower stats sync needed: Demographic data (non-monthly) is missing.")
if not follower_stats_sync_is_needed_now:
logging.info("Follower stats data is fresh based on current check. No API fetch needed.")
return "Follower Stats: Data up-to-date. ", token_state
logging.info(f"Follower stats sync proceeding for org_urn: {org_urn}")
try:
# This function should return a list of dicts, each dict representing a stat entry
api_follower_stats = get_linkedin_follower_stats(client_id, token_dict, org_urn)
if not api_follower_stats: # api_follower_stats could be None or empty list
logging.info(f"Follower Stats sync: No stats found via API for org {org_urn}.")
return "Follower Stats: None found via API. ", token_state
bubble_follower_stats_df_orig = token_state.get("bubble_follower_stats_df", pd.DataFrame()).copy()
new_stats_to_upload = []
# --- Process Monthly Gains ---
api_monthly_gains = [s for s in api_follower_stats if s.get(FOLLOWER_STATS_TYPE_COLUMN) == 'follower_gains_monthly']
existing_monthly_gain_dates = set()
if not bubble_follower_stats_df_orig.empty:
bubble_monthly_df = bubble_follower_stats_df_orig[bubble_follower_stats_df_orig[FOLLOWER_STATS_TYPE_COLUMN] == 'follower_gains_monthly']
if FOLLOWER_STATS_CATEGORY_COLUMN in bubble_monthly_df.columns:
# Ensure dates are strings for set comparison, handle potential NaNs from to_datetime if any
existing_monthly_gain_dates = set(bubble_monthly_df[FOLLOWER_STATS_CATEGORY_COLUMN].astype(str).unique())
for gain_stat in api_monthly_gains:
# category_name for monthly gains is 'YYYY-MM-DD' string from linkedin_follower_stats
if str(gain_stat.get(FOLLOWER_STATS_CATEGORY_COLUMN)) not in existing_monthly_gain_dates:
new_stats_to_upload.append(gain_stat)
# --- Process Demographics (add if new or different counts) ---
api_demographics = [s for s in api_follower_stats if s.get(FOLLOWER_STATS_TYPE_COLUMN) != 'follower_gains_monthly']
# Create a map of existing demographics for quick lookup and comparison
# Key: (org_urn, type, category_name) -> (organic_count, paid_count)
existing_demographics_map = {}
if not bubble_follower_stats_df_orig.empty:
bubble_demographics_df = bubble_follower_stats_df_orig[bubble_follower_stats_df_orig[FOLLOWER_STATS_TYPE_COLUMN] != 'follower_gains_monthly']
if not bubble_demographics_df.empty and \
all(col in bubble_demographics_df.columns for col in [
FOLLOWER_STATS_ORG_URN_COLUMN, FOLLOWER_STATS_TYPE_COLUMN,
FOLLOWER_STATS_CATEGORY_COLUMN, FOLLOWER_STATS_ORGANIC_COLUMN,
FOLLOWER_STATS_PAID_COLUMN
]):
for _, row in bubble_demographics_df.iterrows():
key = (
str(row[FOLLOWER_STATS_ORG_URN_COLUMN]),
str(row[FOLLOWER_STATS_TYPE_COLUMN]),
str(row[FOLLOWER_STATS_CATEGORY_COLUMN])
)
existing_demographics_map[key] = (
row[FOLLOWER_STATS_ORGANIC_COLUMN],
row[FOLLOWER_STATS_PAID_COLUMN]
)
for demo_stat in api_demographics:
key = (
str(demo_stat.get(FOLLOWER_STATS_ORG_URN_COLUMN)),
str(demo_stat.get(FOLLOWER_STATS_TYPE_COLUMN)),
str(demo_stat.get(FOLLOWER_STATS_CATEGORY_COLUMN))
)
api_counts = (
demo_stat.get(FOLLOWER_STATS_ORGANIC_COLUMN, 0),
demo_stat.get(FOLLOWER_STATS_PAID_COLUMN, 0)
)
if key not in existing_demographics_map or existing_demographics_map[key] != api_counts:
new_stats_to_upload.append(demo_stat)
if not new_stats_to_upload:
logging.info(f"Follower Stats sync: Data for org {org_urn} is up-to-date or no changes found.")
return "Follower Stats: Data up-to-date or no changes. ", token_state
bulk_upload_to_bubble(new_stats_to_upload, BUBBLE_FOLLOWER_STATS_TABLE_NAME)
logging.info(f"Successfully uploaded {len(new_stats_to_upload)} follower stat entries to Bubble for org {org_urn}.")
# Update in-memory DataFrame: Concatenate old and new, then drop duplicates strategically
temp_df = pd.concat([bubble_follower_stats_df_orig, pd.DataFrame(new_stats_to_upload)], ignore_index=True)
# For monthly gains, unique by org, date (category_name)
monthly_part = temp_df[temp_df[FOLLOWER_STATS_TYPE_COLUMN] == 'follower_gains_monthly'].drop_duplicates(
subset=[FOLLOWER_STATS_ORG_URN_COLUMN, FOLLOWER_STATS_CATEGORY_COLUMN],
keep='last' # Keep the newest entry if dates somehow collide (shouldn't with current logic)
)
# For demographics, unique by org, type, and category_name
demographics_part = temp_df[temp_df[FOLLOWER_STATS_TYPE_COLUMN] != 'follower_gains_monthly'].drop_duplicates(
subset=[FOLLOWER_STATS_ORG_URN_COLUMN, FOLLOWER_STATS_TYPE_COLUMN, FOLLOWER_STATS_CATEGORY_COLUMN],
keep='last' # This ensures that if a demographic was "updated", the new version is kept
)
token_state["bubble_follower_stats_df"] = pd.concat([monthly_part, demographics_part], ignore_index=True)
return f"Follower Stats: Synced {len(new_stats_to_upload)} entries. ", token_state
except ValueError as ve: # Catch specific errors if your API calls raise them
logging.error(f"ValueError during follower stats sync for {org_urn}: {ve}", exc_info=True)
return f"Follower Stats Error: {html.escape(str(ve))}. ", token_state
except Exception as e:
logging.exception(f"Unexpected error in sync_linkedin_follower_stats for {org_urn}.") # Logs full traceback
return f"Follower Stats: Unexpected error ({type(e).__name__}). ", token_state
def sync_all_linkedin_data(token_state):
"""Orchestrates the syncing of all LinkedIn data types (Posts, Mentions, Follower Stats)."""
logging.info("Starting sync_all_linkedin_data process.")
if not token_state or not token_state.get("token"):
logging.error("Sync All: Access denied. LinkedIn token not available.")
return "<p style='color:red; text-align:center;'>β Access denied. LinkedIn token not available.</p>", token_state
client_id = token_state.get("client_id")
token_dict = token_state.get("token")
org_urn = token_state.get('org_urn')
fetch_count_for_posts_api = token_state.get('fetch_count_for_api', 0)
# Operate on copies to avoid modifying original DFs in state directly until the end
bubble_posts_df_orig = token_state.get("bubble_posts_df", pd.DataFrame()).copy()
posts_sync_message = ""
mentions_sync_message = ""
follower_stats_sync_message = ""
if not org_urn:
logging.error("Sync All: Org URN missing in token_state.")
return "<p style='color:red;'>β Config error: Org URN missing.</p>", token_state
if not client_id or client_id == "ENV VAR MISSING":
logging.error("Sync All: Client ID missing or not set.")
return "<p style='color:red;'>β Config error: Client ID missing.</p>", token_state
# --- Sync Posts ---
if fetch_count_for_posts_api == 0:
posts_sync_message = "Posts: Already up-to-date. "
logging.info("Posts sync: Skipped as fetch_count_for_posts_api is 0.")
else:
logging.info(f"Posts sync: Starting fetch for {fetch_count_for_posts_api} posts.")
try:
# fetch_linkedin_posts_core is expected to return: (processed_raw_posts, stats_map, errors_list)
processed_raw_posts, stats_map, _ = fetch_linkedin_posts_core(client_id, token_dict, org_urn, count=fetch_count_for_posts_api)
if not processed_raw_posts:
posts_sync_message = "Posts: None found via API. "
logging.info("Posts sync: No raw posts returned from API.")
else:
existing_post_urns = set()
if not bubble_posts_df_orig.empty and BUBBLE_POST_URN_COLUMN_NAME in bubble_posts_df_orig.columns:
existing_post_urns = set(bubble_posts_df_orig[BUBBLE_POST_URN_COLUMN_NAME].dropna().astype(str))
# Filter out posts already in Bubble
new_raw_posts = [p for p in processed_raw_posts if str(p.get(LINKEDIN_POST_URN_KEY)) not in existing_post_urns]
if not new_raw_posts:
posts_sync_message = "Posts: All fetched already in Bubble. "
logging.info("Posts sync: All fetched posts were already found in Bubble.")
else:
logging.info(f"Posts sync: Processing {len(new_raw_posts)} new raw posts.")
post_urns_to_process = [p[LINKEDIN_POST_URN_KEY] for p in new_raw_posts if p.get(LINKEDIN_POST_URN_KEY)]
all_comments_data = fetch_comments(client_id, token_dict, post_urns_to_process, stats_map)
sentiments_per_post = analyze_sentiment(all_comments_data) # Assumes analysis of comments
detailed_new_posts = compile_detailed_posts(new_raw_posts, stats_map, sentiments_per_post) # Compiles with stats and sentiment
# prepare_data_for_bubble should return tuple: (posts_for_bubble, post_stats_for_bubble, post_comments_for_bubble)
li_posts, li_post_stats, li_post_comments = prepare_data_for_bubble(detailed_new_posts, all_comments_data)
if li_posts: # If there are posts to upload
bulk_upload_to_bubble(li_posts, "LI_posts")
# Update in-memory DataFrame for posts
updated_posts_df = pd.concat([bubble_posts_df_orig, pd.DataFrame(li_posts)], ignore_index=True)
token_state["bubble_posts_df"] = updated_posts_df.drop_duplicates(subset=[BUBBLE_POST_URN_COLUMN_NAME], keep='last')
logging.info(f"Posts sync: Uploaded {len(li_posts)} new posts to Bubble.")
if li_post_stats:
bulk_upload_to_bubble(li_post_stats, "LI_post_stats")
logging.info(f"Posts sync: Uploaded {len(li_post_stats)} post_stats entries.")
# Note: Consider how/if to update a local stats_df in token_state if you maintain one.
if li_post_comments:
bulk_upload_to_bubble(li_post_comments, "LI_post_comments")
logging.info(f"Posts sync: Uploaded {len(li_post_comments)} post_comments entries.")
# Note: Consider how/if to update a local comments_df in token_state.
posts_sync_message = f"Posts: Synced {len(li_posts)} new. "
else:
posts_sync_message = "Posts: No new ones to upload after processing. "
logging.info("Posts sync: No new posts were prepared for Bubble upload.")
except ValueError as ve: # Catch specific errors from your API calls
posts_sync_message = f"Posts Error: {html.escape(str(ve))}. "
logging.error(f"Posts sync: ValueError: {ve}", exc_info=True)
except Exception as e:
logging.exception("Posts sync: Unexpected error during processing.") # Logs full traceback
posts_sync_message = f"Posts: Unexpected error ({type(e).__name__}). "
# --- Sync Mentions ---
# The sync_linkedin_mentions function updates token_state["bubble_mentions_df"] internally
mentions_sync_message, token_state = sync_linkedin_mentions(token_state)
# --- Sync Follower Stats ---
# The sync_linkedin_follower_stats function updates token_state["bubble_follower_stats_df"] internally
follower_stats_sync_message, token_state = sync_linkedin_follower_stats(token_state)
logging.info(f"Sync process complete. Messages: Posts: [{posts_sync_message.strip()}], Mentions: [{mentions_sync_message.strip()}], Follower Stats: [{follower_stats_sync_message.strip()}]")
final_message = f"<p style='color:green; text-align:center;'>β
Sync Attempted. {posts_sync_message} {mentions_sync_message} {follower_stats_sync_message}</p>"
return final_message, token_state
def display_main_dashboard(token_state):
"""Generates HTML for the main dashboard display using data from token_state."""
if not token_state or not token_state.get("token"):
logging.warning("Dashboard display: Access denied. No token available.")
return "β Access denied. No token available for dashboard."
html_parts = ["<div style='padding:10px;'><h3>Dashboard Overview</h3>"]
# Display Recent Posts
posts_df = token_state.get("bubble_posts_df", pd.DataFrame())
html_parts.append(f"<h4>Recent Posts ({len(posts_df)} in Bubble):</h4>")
if not posts_df.empty:
# Define columns to show, ensuring they exist in the DataFrame
cols_to_show_posts = [col for col in [BUBBLE_POST_DATE_COLUMN_NAME, 'text', 'sentiment', 'summary_text', 'li_eb_label'] if col in posts_df.columns]
if not cols_to_show_posts:
html_parts.append("<p>No relevant post columns found to display.</p>")
else:
display_df_posts = posts_df.copy()
if BUBBLE_POST_DATE_COLUMN_NAME in display_df_posts.columns:
try:
# Format date and sort
display_df_posts[BUBBLE_POST_DATE_COLUMN_NAME] = pd.to_datetime(display_df_posts[BUBBLE_POST_DATE_COLUMN_NAME], errors='coerce').dt.strftime('%Y-%m-%d %H:%M')
display_df_posts = display_df_posts.sort_values(by=BUBBLE_POST_DATE_COLUMN_NAME, ascending=False)
except Exception as e:
logging.error(f"Error formatting post dates for display: {e}")
html_parts.append("<p>Error formatting post dates.</p>")
# Use escape=False if 'text' or 'summary_text' can contain HTML; otherwise, True is safer.
# Assuming 'text' might have HTML from LinkedIn, using escape=False. Be cautious with this.
html_parts.append(display_df_posts[cols_to_show_posts].head().to_html(escape=False, index=False, classes="table table-striped table-sm"))
else:
html_parts.append("<p>No posts loaded from Bubble.</p>")
html_parts.append("<hr/>")
# Display Recent Mentions
mentions_df = token_state.get("bubble_mentions_df", pd.DataFrame())
html_parts.append(f"<h4>Recent Mentions ({len(mentions_df)} in Bubble):</h4>")
if not mentions_df.empty:
cols_to_show_mentions = [col for col in [BUBBLE_MENTIONS_DATE_COLUMN_NAME, "mention_text", "sentiment_label"] if col in mentions_df.columns]
if not cols_to_show_mentions:
html_parts.append("<p>No relevant mention columns found to display.</p>")
else:
display_df_mentions = mentions_df.copy()
if BUBBLE_MENTIONS_DATE_COLUMN_NAME in display_df_mentions.columns:
try:
display_df_mentions[BUBBLE_MENTIONS_DATE_COLUMN_NAME] = pd.to_datetime(display_df_mentions[BUBBLE_MENTIONS_DATE_COLUMN_NAME], errors='coerce').dt.strftime('%Y-%m-%d %H:%M')
display_df_mentions = display_df_mentions.sort_values(by=BUBBLE_MENTIONS_DATE_COLUMN_NAME, ascending=False)
except Exception as e:
logging.error(f"Error formatting mention dates for display: {e}")
html_parts.append("<p>Error formatting mention dates.</p>")
# Assuming "mention_text" can have HTML.
html_parts.append(display_df_mentions[cols_to_show_mentions].head().to_html(escape=False, index=False, classes="table table-striped table-sm"))
else:
html_parts.append("<p>No mentions loaded from Bubble.</p>")
html_parts.append("<hr/>")
# Display Follower Statistics Summary
follower_stats_df = token_state.get("bubble_follower_stats_df", pd.DataFrame())
html_parts.append(f"<h4>Follower Statistics ({len(follower_stats_df)} entries in Bubble):</h4>")
if not follower_stats_df.empty:
# Latest Monthly Follower Gain
monthly_gains = follower_stats_df[follower_stats_df[FOLLOWER_STATS_TYPE_COLUMN] == 'follower_gains_monthly'].copy()
if not monthly_gains.empty and FOLLOWER_STATS_CATEGORY_COLUMN in monthly_gains.columns and \
FOLLOWER_STATS_ORGANIC_COLUMN in monthly_gains.columns and FOLLOWER_STATS_PAID_COLUMN in monthly_gains.columns:
try:
# FOLLOWER_STATS_CATEGORY_COLUMN for monthly gains is 'YYYY-MM-DD'
monthly_gains.loc[:, FOLLOWER_STATS_CATEGORY_COLUMN] = pd.to_datetime(monthly_gains[FOLLOWER_STATS_CATEGORY_COLUMN], errors='coerce').dt.strftime('%Y-%m-%d')
latest_gain = monthly_gains.sort_values(by=FOLLOWER_STATS_CATEGORY_COLUMN, ascending=False).head(1)
if not latest_gain.empty:
html_parts.append("<h5>Latest Monthly Follower Gain:</h5>")
html_parts.append(latest_gain[[FOLLOWER_STATS_CATEGORY_COLUMN, FOLLOWER_STATS_ORGANIC_COLUMN, FOLLOWER_STATS_PAID_COLUMN]].to_html(escape=True, index=False, classes="table table-sm"))
else:
html_parts.append("<p>No valid monthly follower gain data to display after processing.</p>")
except Exception as e:
logging.error(f"Error formatting follower gain dates for display: {e}")
html_parts.append("<p>Error displaying monthly follower gain data.</p>")
else:
html_parts.append("<p>No monthly follower gain data or required columns are missing.</p>")
# Count of Demographic Entries
demographics_count = len(follower_stats_df[follower_stats_df[FOLLOWER_STATS_TYPE_COLUMN] != 'follower_gains_monthly'])
html_parts.append(f"<p>Total demographic entries (seniority, industry, etc.): {demographics_count}</p>")
else:
html_parts.append("<p>No follower statistics loaded from Bubble.</p>")
html_parts.append("</div>")
return "".join(html_parts)
def guarded_fetch_analytics(token_state):
"""Guarded call to fetch_and_render_analytics, ensuring token and basic data structures."""
if not token_state or not token_state.get("token"):
logging.warning("Analytics fetch: Access denied. No token.")
# Ensure the number of returned Nones matches the expected number of outputs for the plots
return ("β Access denied. No token.", None, None, None, None, None, None, None)
# Ensure DataFrames are passed, even if empty, to avoid errors in the analytics function
posts_df_analytics = token_state.get("bubble_posts_df", pd.DataFrame())
mentions_df_analytics = token_state.get("bubble_mentions_df", pd.DataFrame())
follower_stats_df_analytics = token_state.get("bubble_follower_stats_df", pd.DataFrame())
logging.info("Calling fetch_and_render_analytics with current token_state data.")
return fetch_and_render_analytics(
token_state.get("client_id"),
token_state.get("token"),
token_state.get("org_urn"),
posts_df_analytics,
mentions_df_analytics,
follower_stats_df_analytics
)
def run_mentions_tab_display(token_state):
"""Generates HTML and a plot for the Mentions tab."""
logging.info("Updating Mentions Tab display.")
if not token_state or not token_state.get("token"):
logging.warning("Mentions tab: Access denied. No token.")
return ("β Access denied. No token available for mentions.", None)
mentions_df = token_state.get("bubble_mentions_df", pd.DataFrame())
if mentions_df.empty:
logging.info("Mentions tab: No mentions data in Bubble.")
return ("<p style='text-align:center;'>No mentions data in Bubble. Try syncing.</p>", None)
html_parts = ["<h3 style='text-align:center;'>Recent Mentions</h3>"]
# Define columns to display, ensuring they exist
display_columns = [col for col in [BUBBLE_MENTIONS_DATE_COLUMN_NAME, "mention_text", "sentiment_label", BUBBLE_MENTIONS_ID_COLUMN_NAME] if col in mentions_df.columns]
mentions_df_display = mentions_df.copy()
if BUBBLE_MENTIONS_DATE_COLUMN_NAME in mentions_df_display.columns:
try:
mentions_df_display[BUBBLE_MENTIONS_DATE_COLUMN_NAME] = pd.to_datetime(mentions_df_display[BUBBLE_MENTIONS_DATE_COLUMN_NAME], errors='coerce').dt.strftime('%Y-%m-%d %H:%M')
mentions_df_display = mentions_df_display.sort_values(by=BUBBLE_MENTIONS_DATE_COLUMN_NAME, ascending=False)
except Exception as e:
logging.error(f"Error formatting mention dates for tab display: {e}")
html_parts.append("<p>Error formatting mention dates.</p>")
if not display_columns or mentions_df_display[display_columns].empty: # Check if display_df is empty after potential sort/filter
html_parts.append("<p>Required columns for mentions display are missing or no data after processing.</p>")
else:
# Assuming "mention_text" might contain HTML.
html_parts.append(mentions_df_display[display_columns].head(20).to_html(escape=False, index=False, classes="table table-sm"))
mentions_html_output = "\n".join(html_parts)
fig = None # Initialize fig to None
if not mentions_df.empty and "sentiment_label" in mentions_df.columns:
try:
import matplotlib.pyplot as plt
plt.switch_backend('Agg') # Essential for Gradio
fig_plot, ax = plt.subplots(figsize=(6,4)) # Create figure and axes
sentiment_counts = mentions_df["sentiment_label"].value_counts()
sentiment_counts.plot(kind='bar', ax=ax, color=['#4CAF50', '#FFC107', '#F44336', '#9E9E9E', '#2196F3']) # Example colors
ax.set_title("Mention Sentiment Distribution")
ax.set_ylabel("Count")
plt.xticks(rotation=45, ha='right')
plt.tight_layout() # Adjust layout to prevent labels from overlapping
fig = fig_plot # Assign the figure to fig
logging.info("Mentions tab: Sentiment distribution plot generated.")
except Exception as e:
logging.error(f"Error generating mentions plot: {e}", exc_info=True)
fig = None # Ensure fig is None on error
else:
logging.info("Mentions tab: Not enough data or 'sentiment_label' column missing for plot.")
return mentions_html_output, fig
def run_follower_stats_tab_display(token_state):
"""Generates HTML and plots for the Follower Stats tab."""
logging.info("Updating Follower Stats Tab display.")
if not token_state or not token_state.get("token"):
logging.warning("Follower stats tab: Access denied. No token.")
return ("β Access denied. No token available for follower stats.", None, None, None)
follower_stats_df_orig = token_state.get("bubble_follower_stats_df", pd.DataFrame())
if follower_stats_df_orig.empty:
logging.info("Follower stats tab: No follower stats data in Bubble.")
return ("<p style='text-align:center;'>No follower stats data in Bubble. Try syncing.</p>", None, None, None)
follower_stats_df = follower_stats_df_orig.copy() # Work with a copy
html_parts = ["<div style='padding:10px;'><h3 style='text-align:center;'>Follower Statistics Overview</h3>"]
plot_monthly_gains = None
plot_seniority_dist = None
plot_industry_dist = None # Initialize for industry plot
# --- Monthly Gains Table & Plot ---
# Filter for monthly gains and ensure necessary columns exist
monthly_gains_df = follower_stats_df[
(follower_stats_df[FOLLOWER_STATS_TYPE_COLUMN] == 'follower_gains_monthly') &
(follower_stats_df[FOLLOWER_STATS_CATEGORY_COLUMN].notna()) & # Date column
(follower_stats_df[FOLLOWER_STATS_ORGANIC_COLUMN].notna()) &
(follower_stats_df[FOLLOWER_STATS_PAID_COLUMN].notna())
].copy()
if not monthly_gains_df.empty:
try:
# FOLLOWER_STATS_CATEGORY_COLUMN for monthly gains is 'YYYY-MM-DD'
# For table display, sort descending by original date string
monthly_gains_df.loc[:, FOLLOWER_STATS_CATEGORY_COLUMN_DT] = pd.to_datetime(monthly_gains_df[FOLLOWER_STATS_CATEGORY_COLUMN], errors='coerce')
monthly_gains_df_sorted_table = monthly_gains_df.sort_values(by=FOLLOWER_STATS_CATEGORY_COLUMN_DT, ascending=False)
html_parts.append("<h4>Monthly Follower Gains (Last 13 Months):</h4>")
# Format date for display in table
table_display_df = monthly_gains_df_sorted_table.copy()
table_display_df[FOLLOWER_STATS_CATEGORY_COLUMN] = table_display_df[FOLLOWER_STATS_CATEGORY_COLUMN_DT].dt.strftime('%Y-%m')
html_parts.append(table_display_df[[FOLLOWER_STATS_CATEGORY_COLUMN, FOLLOWER_STATS_ORGANIC_COLUMN, FOLLOWER_STATS_PAID_COLUMN]].head(13).to_html(escape=True, index=False, classes="table table-sm"))
# For plotting, sort ascending by datetime object for correct time series
monthly_gains_df_sorted_plot = monthly_gains_df.sort_values(by=FOLLOWER_STATS_CATEGORY_COLUMN_DT, ascending=True)
# Use the formatted YYYY-MM string for x-axis ticks on the plot
plot_dates = monthly_gains_df_sorted_plot[FOLLOWER_STATS_CATEGORY_COLUMN_DT].dt.strftime('%Y-%m').unique()
import matplotlib.pyplot as plt
plt.switch_backend('Agg')
fig_gains, ax_gains = plt.subplots(figsize=(10,5)) # Wider plot
ax_gains.plot(plot_dates, monthly_gains_df_sorted_plot.groupby(monthly_gains_df_sorted_plot[FOLLOWER_STATS_CATEGORY_COLUMN_DT].dt.strftime('%Y-%m'))[FOLLOWER_STATS_ORGANIC_COLUMN].sum(), marker='o', linestyle='-', label='Organic Gain')
ax_gains.plot(plot_dates, monthly_gains_df_sorted_plot.groupby(monthly_gains_df_sorted_plot[FOLLOWER_STATS_CATEGORY_COLUMN_DT].dt.strftime('%Y-%m'))[FOLLOWER_STATS_PAID_COLUMN].sum(), marker='x', linestyle='--', label='Paid Gain')
ax_gains.set_title("Monthly Follower Gains Over Time")
ax_gains.set_ylabel("Follower Count")
ax_gains.set_xlabel("Month (YYYY-MM)")
plt.xticks(rotation=45, ha='right')
ax_gains.legend()
plt.grid(True, linestyle='--', alpha=0.7)
plt.tight_layout()
plot_monthly_gains = fig_gains
logging.info("Follower stats tab: Monthly gains plot generated.")
except Exception as e:
logging.error(f"Error processing or plotting monthly gains: {e}", exc_info=True)
html_parts.append("<p>Error displaying monthly follower gain data.</p>")
else:
html_parts.append("<p>No monthly follower gain data available or required columns missing.</p>")
html_parts.append("<hr/>")
# --- Seniority Table & Plot ---
seniority_df = follower_stats_df[
(follower_stats_df[FOLLOWER_STATS_TYPE_COLUMN] == 'follower_seniority') &
(follower_stats_df[FOLLOWER_STATS_CATEGORY_COLUMN].notna()) & # Seniority name
(follower_stats_df[FOLLOWER_STATS_ORGANIC_COLUMN].notna())
].copy()
if not seniority_df.empty:
try:
seniority_df_sorted = seniority_df.sort_values(by=FOLLOWER_STATS_ORGANIC_COLUMN, ascending=False)
html_parts.append("<h4>Followers by Seniority (Top 10 Organic):</h4>")
html_parts.append(seniority_df_sorted[[FOLLOWER_STATS_CATEGORY_COLUMN, FOLLOWER_STATS_ORGANIC_COLUMN, FOLLOWER_STATS_PAID_COLUMN]].head(10).to_html(escape=True, index=False, classes="table table-sm"))
import matplotlib.pyplot as plt
plt.switch_backend('Agg')
fig_seniority, ax_seniority = plt.subplots(figsize=(8,5)) # Adjusted size
top_n_seniority = seniority_df_sorted.nlargest(10, FOLLOWER_STATS_ORGANIC_COLUMN)
ax_seniority.bar(top_n_seniority[FOLLOWER_STATS_CATEGORY_COLUMN], top_n_seniority[FOLLOWER_STATS_ORGANIC_COLUMN], color='skyblue')
ax_seniority.set_title("Follower Distribution by Seniority (Top 10 Organic)")
ax_seniority.set_ylabel("Organic Follower Count")
plt.xticks(rotation=45, ha='right')
plt.grid(axis='y', linestyle='--', alpha=0.7)
plt.tight_layout()
plot_seniority_dist = fig_seniority
logging.info("Follower stats tab: Seniority distribution plot generated.")
except Exception as e:
logging.error(f"Error processing or plotting seniority data: {e}", exc_info=True)
html_parts.append("<p>Error displaying follower seniority data.</p>")
else:
html_parts.append("<p>No follower seniority data available or required columns missing.</p>")
html_parts.append("<hr/>")
# --- Industry Table & Plot ---
industry_df = follower_stats_df[
(follower_stats_df[FOLLOWER_STATS_TYPE_COLUMN] == 'follower_industry') &
(follower_stats_df[FOLLOWER_STATS_CATEGORY_COLUMN].notna()) & # Industry name
(follower_stats_df[FOLLOWER_STATS_ORGANIC_COLUMN].notna())
].copy()
if not industry_df.empty:
try:
industry_df_sorted = industry_df.sort_values(by=FOLLOWER_STATS_ORGANIC_COLUMN, ascending=False)
html_parts.append("<h4>Followers by Industry (Top 10 Organic):</h4>")
html_parts.append(industry_df_sorted[[FOLLOWER_STATS_CATEGORY_COLUMN, FOLLOWER_STATS_ORGANIC_COLUMN, FOLLOWER_STATS_PAID_COLUMN]].head(10).to_html(escape=True, index=False, classes="table table-sm"))
import matplotlib.pyplot as plt
plt.switch_backend('Agg')
fig_industry, ax_industry = plt.subplots(figsize=(8,5))
top_n_industry = industry_df_sorted.nlargest(10, FOLLOWER_STATS_ORGANIC_COLUMN)
ax_industry.bar(top_n_industry[FOLLOWER_STATS_CATEGORY_COLUMN], top_n_industry[FOLLOWER_STATS_ORGANIC_COLUMN], color='lightcoral')
ax_industry.set_title("Follower Distribution by Industry (Top 10 Organic)")
ax_industry.set_ylabel("Organic Follower Count")
plt.xticks(rotation=45, ha='right')
plt.grid(axis='y', linestyle='--', alpha=0.7)
plt.tight_layout()
plot_industry_dist = fig_industry
logging.info("Follower stats tab: Industry distribution plot generated.")
except Exception as e:
logging.error(f"Error processing or plotting industry data: {e}", exc_info=True)
html_parts.append("<p>Error displaying follower industry data.</p>")
else:
html_parts.append("<p>No follower industry data available or required columns missing.</p>")
html_parts.append("</div>")
follower_html_output = "\n".join(html_parts)
return follower_html_output, plot_monthly_gains, plot_seniority_dist, plot_industry_dist
# --- Gradio UI Blocks ---
with gr.Blocks(theme=gr.themes.Soft(primary_hue="blue", secondary_hue="sky"),
title="LinkedIn Organization Dashboard") as app:
# Central state for holding token, client_id, org_urn, and fetched dataframes
token_state = gr.State(value={
"token": None, "client_id": None, "org_urn": None,
"bubble_posts_df": pd.DataFrame(), "fetch_count_for_api": 0, # For posts
"bubble_mentions_df": pd.DataFrame(),
"bubble_follower_stats_df": pd.DataFrame(),
"url_user_token_temp_storage": None # To hold token from URL temporarily
})
gr.Markdown("# π LinkedIn Organization Dashboard")
# Hidden textboxes to capture URL parameters
url_user_token_display = gr.Textbox(label="User Token (from URL - Hidden)", interactive=False, visible=False)
status_box = gr.Textbox(label="Overall LinkedIn Token Status", interactive=False, value="Initializing...")
org_urn_display = gr.Textbox(label="Organization URN (from URL - Hidden)", interactive=False, visible=False)
# Load URL parameters when the Gradio app loads
# This will populate url_user_token_display and org_urn_display
app.load(fn=get_url_user_token, inputs=None, outputs=[url_user_token_display, org_urn_display], api_name="get_url_params", show_progress=False)
# This function will run after URL params are loaded and org_urn_display changes (which it will on load)
def initial_load_sequence(url_token, org_urn_val, current_state):
logging.info(f"Initial load sequence triggered by org_urn_display change. Org URN: {org_urn_val}")
# Process token, fetch Bubble data, determine sync needs
status_msg, new_state, btn_update = process_and_store_bubble_token(url_token, org_urn_val, current_state)
# Display initial dashboard content based on (potentially empty) Bubble data
dashboard_content = display_main_dashboard(new_state)
return status_msg, new_state, btn_update, dashboard_content
with gr.Tabs():
with gr.TabItem("1οΈβ£ Dashboard & Sync"):
gr.Markdown("System checks for existing data from Bubble. The 'Sync' button activates if new data needs to be fetched from LinkedIn based on the last sync times and data availability.")
sync_data_btn = gr.Button("π Sync LinkedIn Data", variant="primary", visible=False, interactive=False) # Start hidden/disabled
sync_status_html_output = gr.HTML("<p style='text-align:center;'>Sync status will appear here.</p>")
dashboard_display_html = gr.HTML("<p style='text-align:center;'>Dashboard loading...</p>")
# Chain of events for initial load:
# 1. app.load gets URL params.
# 2. org_urn_display.change triggers initial_load_sequence.
# This populates token_state, updates sync button, and loads initial dashboard.
org_urn_display.change(
fn=initial_load_sequence,
inputs=[url_user_token_display, org_urn_display, token_state],
outputs=[status_box, token_state, sync_data_btn, dashboard_display_html],
show_progress="full"
)
# When Sync button is clicked:
# 1. sync_all_linkedin_data: Fetches from LinkedIn, uploads to Bubble, updates token_state DFs.
# 2. process_and_store_bubble_token: Re-evaluates sync needs (button should now say "Up-to-date").
# 3. display_main_dashboard: Refreshes dashboard with newly synced data.
sync_data_btn.click(
fn=sync_all_linkedin_data,
inputs=[token_state],
outputs=[sync_status_html_output, token_state], # token_state is updated here
show_progress="full"
).then(
fn=process_and_store_bubble_token, # Re-check sync status and update button
inputs=[url_user_token_display, org_urn_display, token_state], # Pass current token_state
outputs=[status_box, token_state, sync_data_btn], # token_state updated again
show_progress=False
).then(
fn=display_main_dashboard, # Refresh dashboard display
inputs=[token_state],
outputs=[dashboard_display_html],
show_progress=False
)
with gr.TabItem("2οΈβ£ Analytics"):
fetch_analytics_btn = gr.Button("π Fetch/Refresh Full Analytics", variant="primary")
# Analytics outputs
follower_count_md = gr.Markdown("Analytics data will load here...")
with gr.Row(): follower_plot, growth_plot = gr.Plot(label="Follower Demographics"), gr.Plot(label="Follower Growth")
with gr.Row(): eng_rate_plot = gr.Plot(label="Engagement Rate")
with gr.Row(): interaction_plot = gr.Plot(label="Post Interactions")
with gr.Row(): eb_plot = gr.Plot(label="Engagement Benchmark")
with gr.Row(): mentions_vol_plot, mentions_sentiment_plot = gr.Plot(label="Mentions Volume"), gr.Plot(label="Mentions Sentiment")
fetch_analytics_btn.click(
fn=guarded_fetch_analytics, inputs=[token_state],
outputs=[follower_count_md, follower_plot, growth_plot, eng_rate_plot,
interaction_plot, eb_plot, mentions_vol_plot, mentions_sentiment_plot],
show_progress="full"
)
with gr.TabItem("3οΈβ£ Mentions"):
refresh_mentions_display_btn = gr.Button("π Refresh Mentions Display (from local data)", variant="secondary")
mentions_html = gr.HTML("Mentions data loads from Bubble after sync. Click refresh to view current local data.")
mentions_sentiment_dist_plot = gr.Plot(label="Mention Sentiment Distribution")
refresh_mentions_display_btn.click(
fn=run_mentions_tab_display, inputs=[token_state],
outputs=[mentions_html, mentions_sentiment_dist_plot],
show_progress="full"
)
with gr.TabItem("4οΈβ£ Follower Stats"):
refresh_follower_stats_btn = gr.Button("π Refresh Follower Stats Display (from local data)", variant="secondary")
follower_stats_html = gr.HTML("Follower statistics load from Bubble after sync. Click refresh to view current local data.")
with gr.Row():
fs_plot_monthly_gains = gr.Plot(label="Monthly Follower Gains")
with gr.Row():
fs_plot_seniority = gr.Plot(label="Followers by Seniority (Top 10 Organic)")
fs_plot_industry = gr.Plot(label="Followers by Industry (Top 10 Organic)")
refresh_follower_stats_btn.click(
fn=run_follower_stats_tab_display, inputs=[token_state],
outputs=[follower_stats_html, fs_plot_monthly_gains, fs_plot_seniority, fs_plot_industry],
show_progress="full"
)
if __name__ == "__main__":
# Check for essential environment variables
if not os.environ.get("Linkedin_client_id"):
logging.warning("WARNING: 'Linkedin_client_id' environment variable not set. The app may not function correctly for LinkedIn API calls.")
if not os.environ.get("BUBBLE_APP_NAME") or \
not os.environ.get("BUBBLE_API_KEY_PRIVATE") or \
not os.environ.get("BUBBLE_API_ENDPOINT"):
logging.warning("WARNING: One or more Bubble environment variables (BUBBLE_APP_NAME, BUBBLE_API_KEY_PRIVATE, BUBBLE_API_ENDPOINT) are not set. Bubble integration will fail.")
try:
import matplotlib
logging.info(f"Matplotlib version: {matplotlib.__version__} found.")
except ImportError:
logging.error("Matplotlib is not installed. Plots will not be generated. Please install it: pip install matplotlib")
# Launch the Gradio app
app.launch(server_name="0.0.0.0", server_port=7860, debug=True) # Added debug=True for more verbose logging from Gradio
|