Spaces:
Sleeping
Sleeping
File size: 10,712 Bytes
64fd9b7 edc48fd 833b4d4 64fd9b7 833b4d4 edc48fd 64fd9b7 833b4d4 edc48fd 64fd9b7 833b4d4 edc48fd 64fd9b7 edc48fd 833b4d4 64fd9b7 a46e32d 833b4d4 6b6b475 833b4d4 a46e32d ebbe4db 833b4d4 ebbe4db 833b4d4 ebbe4db a46e32d 833b4d4 a46e32d 833b4d4 ebbe4db 6b6b475 ebbe4db 6b6b475 ebbe4db 6b6b475 833b4d4 6b6b475 edc48fd 833b4d4 64fd9b7 edc48fd 833b4d4 edc48fd 6b6b475 64fd9b7 40a908e 833b4d4 64fd9b7 833b4d4 edc48fd 64fd9b7 edc48fd 64fd9b7 edc48fd 6b6b475 edc48fd 6b6b475 64fd9b7 edc48fd 64fd9b7 833b4d4 64fd9b7 833b4d4 6b6b475 833b4d4 edc48fd 833b4d4 64fd9b7 833b4d4 64fd9b7 833b4d4 edc48fd 64fd9b7 833b4d4 64fd9b7 833b4d4 64fd9b7 833b4d4 edc48fd ebbe4db 833b4d4 ebbe4db edc48fd 64fd9b7 ebbe4db 64fd9b7 833b4d4 6b6b475 833b4d4 6b6b475 833b4d4 88d2e91 833b4d4 f06409c 833b4d4 f06409c 833b4d4 6b6b475 f06409c 6b6b475 833b4d4 ebbe4db 833b4d4 ebbe4db 833b4d4 ebbe4db 833b4d4 ebbe4db 833b4d4 f06409c a46e32d ebbe4db edc48fd 833b4d4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 |
# app/rag_system.py
from __future__ import annotations
import os
import re
from pathlib import Path
from typing import List, Tuple, Optional
import faiss
import numpy as np
# Prefer pypdf; fallback to PyPDF2 if needed
try:
from pypdf import PdfReader
except Exception:
from PyPDF2 import PdfReader # type: ignore
from sentence_transformers import SentenceTransformer
# ---------------- Paths & Cache ----------------
ROOT_DIR = Path(__file__).resolve().parent
DATA_DIR = ROOT_DIR / "data"
UPLOAD_DIR = DATA_DIR / "uploads"
INDEX_DIR = DATA_DIR / "index"
CACHE_DIR = Path(os.getenv("HF_HOME", str(ROOT_DIR / ".cache")))
for d in (DATA_DIR, UPLOAD_DIR, INDEX_DIR, CACHE_DIR):
d.mkdir(parents=True, exist_ok=True)
# ---------------- Config ----------------
MODEL_NAME = os.getenv("EMBED_MODEL", "sentence-transformers/all-MiniLM-L6-v2")
OUTPUT_LANG = os.getenv("OUTPUT_LANG", "en").lower()
# ---------------- Helpers ----------------
AZ_CHARS = set("əğıöşçüİıĞÖŞÇÜƏ")
def _fix_mojibake(s: str) -> str:
"""Fix common UTF-8-as-Latin-1 mojibake."""
if not s:
return s
if any(ch in s for ch in ("Ã", "Ä", "Å", "Ð", "Þ", "þ")):
try:
return s.encode("latin-1", "ignore").decode("utf-8", "ignore")
except Exception:
return s
return s
def _split_sentences(text: str) -> List[str]:
# Split on punctuation boundaries and line breaks
return [s.strip() for s in re.split(r"(?<=[\.!\?])\s+|[\r\n]+", text) if s.strip()]
def _mostly_numeric(s: str) -> bool:
alnum = [c for c in s if c.isalnum()]
if not alnum:
return True
digits = sum(c.isdigit() for c in alnum)
return digits / max(1, len(alnum)) > 0.3
NUM_TOKEN_RE = re.compile(r"\b(\d+[.,]?\d*|%|m²|azn|usd|eur|set|mt)\b", re.IGNORECASE)
def _tabular_like(s: str) -> bool:
hits = len(NUM_TOKEN_RE.findall(s))
return hits >= 2 or "Page" in s or len(s) < 20
def _clean_for_summary(text: str) -> str:
out = []
for ln in text.splitlines():
t = " ".join(ln.split())
if not t or _mostly_numeric(t) or _tabular_like(t):
continue
out.append(t)
return " ".join(out)
def _sim_jaccard(a: str, b: str) -> float:
aw = set(a.lower().split())
bw = set(b.lower().split())
if not aw or not bw:
return 0.0
return len(aw & bw) / len(aw | bw)
STOPWORDS = {
"the","a","an","and","or","of","to","in","on","for","with","by",
"this","that","these","those","is","are","was","were","be","been","being",
"at","as","it","its","from","into","about","over","after","before","than",
"such","can","could","should","would","may","might","will","shall"
}
def _keywords(text: str) -> List[str]:
toks = re.findall(r"[A-Za-zÀ-ÖØ-öø-ÿ0-9]+", text.lower())
return [t for t in toks if t not in STOPWORDS and len(t) > 2]
def _looks_azerbaijani(s: str) -> bool:
has_az = any(ch in AZ_CHARS for ch in s)
non_ascii_ratio = sum(ord(c) > 127 for c in s) / max(1, len(s))
return has_az or non_ascii_ratio > 0.15
# ---------------- RAG Core ----------------
class SimpleRAG:
def __init__(
self,
index_path: Path = INDEX_DIR / "faiss.index",
meta_path: Path = INDEX_DIR / "meta.npy",
model_name: str = MODEL_NAME,
cache_dir: Path = CACHE_DIR,
):
self.index_path = Path(index_path)
self.meta_path = Path(meta_path)
self.model_name = model_name
self.cache_dir = Path(cache_dir)
self.model = SentenceTransformer(self.model_name, cache_folder=str(self.cache_dir))
self.embed_dim = int(self.model.get_sentence_embedding_dimension())
self.index: faiss.Index = faiss.IndexFlatIP(self.embed_dim)
self.chunks: List[str] = []
self.last_added: List[str] = []
self._translator = None # lazy init
self._load()
# ---------- Persistence ----------
def _load(self) -> None:
if self.meta_path.exists():
try:
self.chunks = np.load(self.meta_path, allow_pickle=True).tolist()
except Exception:
self.chunks = []
if self.index_path.exists():
try:
idx = faiss.read_index(str(self.index_path))
if getattr(idx, "d", None) == self.embed_dim:
self.index = idx
except Exception:
pass
def _persist(self) -> None:
faiss.write_index(self.index, str(self.index_path))
np.save(self.meta_path, np.array(self.chunks, dtype=object))
# ---------- Utilities ----------
@property
def is_empty(self) -> bool:
return getattr(self.index, "ntotal", 0) == 0 or not self.chunks
@staticmethod
def _pdf_to_texts(pdf_path: Path, step: int = 800) -> List[str]:
reader = PdfReader(str(pdf_path))
pages: List[str] = []
for p in reader.pages:
t = p.extract_text() or ""
t = _fix_mojibake(t)
if t.strip():
pages.append(t)
chunks: List[str] = []
for txt in pages:
for i in range(0, len(txt), step):
part = txt[i : i + step].strip()
if part:
chunks.append(part)
return chunks
# ---------- Indexing ----------
def add_pdf(self, pdf_path: Path) -> int:
texts = self._pdf_to_texts(pdf_path)
if not texts:
return 0
emb = self.model.encode(
texts, convert_to_numpy=True, normalize_embeddings=True, show_progress_bar=False
)
self.index.add(emb.astype(np.float32))
self.chunks.extend(texts)
self.last_added = texts[:]
self._persist()
return len(texts)
# ---------- Search ----------
def search(self, query: str, k: int = 5) -> List[Tuple[str, float]]:
if self.is_empty:
return []
q = self.model.encode([query], convert_to_numpy=True, normalize_embeddings=True).astype(np.float32)
k = max(1, min(int(k or 5), getattr(self.index, "ntotal", 1)))
D, I = self.index.search(q, k)
out: List[Tuple[str, float]] = []
if I.size > 0 and self.chunks:
for idx, score in zip(I[0], D[0]):
if 0 <= idx < len(self.chunks):
out.append((self.chunks[idx], float(score)))
return out
# ---------- Translation (optional) ----------
def _translate_to_en(self, texts: List[str]) -> List[str]:
if not texts:
return texts
try:
from transformers import pipeline
if self._translator is None:
self._translator = pipeline(
"translation",
model="Helsinki-NLP/opus-mt-az-en",
cache_dir=str(self.cache_dir),
device=-1,
)
outs = self._translator(texts, max_length=400)
return [o["translation_text"].strip() for o in outs]
except Exception:
return texts
# ---------- Fallbacks ----------
def _keyword_fallback(self, question: str, pool: List[str], limit_sentences: int = 4) -> List[str]:
"""Pick sentences sharing keywords with the question (question-dependent even if dense retrieval is weak)."""
qk = set(_keywords(question))
if not qk:
return []
candidates: List[Tuple[float, str]] = []
for text in pool[:200]:
cleaned = _clean_for_summary(text)
for s in _split_sentences(cleaned):
if _tabular_like(s) or _mostly_numeric(s):
continue
toks = set(_keywords(s))
if not toks:
continue
overlap = len(qk & toks)
if overlap == 0:
continue
length_penalty = max(8, min(40, len(s.split())))
score = overlap + min(0.5, overlap / length_penalty)
candidates.append((score, s))
candidates.sort(key=lambda x: x[0], reverse=True)
out: List[str] = []
for _, s in candidates:
if any(_sim_jaccard(s, t) >= 0.82 for t in out):
continue
out.append(s)
if len(out) >= limit_sentences:
break
return out
# ---------- Answer Synthesis ----------
def synthesize_answer(self, question: str, contexts: List[str], max_sentences: int = 4) -> str:
"""Extractive summary over retrieved contexts; falls back to keyword selection; EN translation if needed."""
if not contexts and self.is_empty:
return "No relevant context found. Index is empty — upload a PDF first."
# Fix mojibake in contexts
contexts = [_fix_mojibake(c) for c in (contexts or [])]
# Build candidate sentences from nearby contexts
local_pool: List[str] = []
for c in (contexts or [])[:5]: # keep it light
cleaned = _clean_for_summary(c)
for s in _split_sentences(cleaned):
w = s.split()
if not (8 <= len(w) <= 35):
continue
if _tabular_like(s) or _mostly_numeric(s):
continue
local_pool.append(" ".join(w))
selected: List[str] = []
if local_pool:
q_emb = self.model.encode([question], convert_to_numpy=True, normalize_embeddings=True).astype(np.float32)
cand_emb = self.model.encode(local_pool, convert_to_numpy=True, normalize_embeddings=True).astype(np.float32)
scores = (cand_emb @ q_emb.T).ravel()
order = np.argsort(-scores)
for i in order:
s = local_pool[i].strip()
if any(_sim_jaccard(s, t) >= 0.82 for t in selected):
continue
selected.append(s)
if len(selected) >= max_sentences:
break
# Keyword fallback if needed
if not selected:
selected = self._keyword_fallback(question, self.chunks, limit_sentences=max_sentences)
if not selected:
return "No readable sentences matched the question. Try a more specific query."
# Translate to EN if looks AZ and OUTPUT_LANG = en
if OUTPUT_LANG == "en" and any(_looks_azerbaijani(s) for s in selected):
selected = self._translate_to_en(selected)
bullets = "\n".join(f"- {s}" for s in selected)
return f"Answer (based on document context):\n{bullets}"
# Public API
__all__ = [
"SimpleRAG",
"UPLOAD_DIR",
"INDEX_DIR",
]
|