File size: 1,774 Bytes
defaa9b
11a17c6
7e4e9e0
bfcd0c9
 
 
defaa9b
bfcd0c9
 
 
 
 
 
defaa9b
 
bfcd0c9
 
 
ccff75d
 
defaa9b
ccff75d
defaa9b
 
7ff053d
 
 
 
 
 
 
ccff75d
defaa9b
ccff75d
 
defaa9b
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
# evo_model.py — EvoDecoder model with extended positional encoding
import torch
import torch.nn as nn
import math

class PositionalEncoding(nn.Module):
    def __init__(self, d_model, max_len=512):  # Increased from 128 to 512
        super().__init__()
        pe = torch.zeros(max_len, d_model)
        position = torch.arange(0, max_len, dtype=torch.float32).unsqueeze(1)
        div_term = torch.exp(torch.arange(0, d_model, 2).float() * (-math.log(10000.0) / d_model))
        pe[:, 0::2] = torch.sin(position * div_term)
        pe[:, 1::2] = torch.cos(position * div_term)
        pe = pe.unsqueeze(0)  # shape: [1, max_len, d_model]
        self.register_buffer('pe', pe)

    def forward(self, x):
        return x + self.pe[:, :x.size(1)]

class EvoDecoderModel(nn.Module):
    def __init__(self, vocab_size, d_model=512, nhead=8, num_layers=6, dim_feedforward=2048, dropout=0.1):
        super().__init__()
        self.embedding = nn.Embedding(vocab_size, d_model)
        self.pos_encoder = PositionalEncoding(d_model)
        decoder_layer = nn.TransformerDecoderLayer(
            d_model=d_model,
            nhead=nhead,
            dim_feedforward=dim_feedforward,
            dropout=dropout,
            batch_first=True
        )
        self.decoder = nn.TransformerDecoder(decoder_layer, num_layers=num_layers)
        self.linear = nn.Linear(d_model, vocab_size)

    def forward(self, input_ids):
        embedded = self.embedding(input_ids)
        embedded = self.pos_encoder(embedded)
        seq_len = embedded.size(1)
        mask = torch.triu(torch.ones(seq_len, seq_len, device=embedded.device), diagonal=1).bool()
        output = self.decoder(embedded, embedded, tgt_mask=mask)
        logits = self.linear(output)
        return logits