File size: 2,025 Bytes
5490a10
9dce9f3
5490a10
9dce9f3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2b38854
9dce9f3
 
 
 
 
 
 
69a8269
9dce9f3
 
 
 
 
 
fe5756c
9dce9f3
 
 
fe5756c
 
 
9dce9f3
69a8269
 
9dce9f3
 
69a8269
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
# evo_transformer.py
import random
import json

class EvoTransformer:
    def __init__(self, config=None):
        self.config = config or {
            "layers": 4,
            "attention_heads": 4,
            "ffn_dim": 1024,
            "dropout": 0.1,
            "memory": False,
        }
        self.history = [self.config.copy()]

    def mutate(self):
        new_config = self.config.copy()
        trait = random.choice(list(new_config.keys()))

        if trait == "layers":
            new_config[trait] = max(1, new_config[trait] + random.choice([-1, 1]))
        elif trait == "attention_heads":
            new_config[trait] = random.choice([2, 4, 6, 8])
        elif trait == "ffn_dim":
            new_config[trait] = random.choice([512, 1024, 2048])
        elif trait == "dropout":
            new_config[trait] = round(min(max(0.0, new_config[trait] + random.uniform(-0.05, 0.05)), 0.5), 2)
        elif trait == "memory":
            new_config[trait] = not new_config[trait]

        self.config = new_config
        self.history.append(new_config.copy())

    def evolve(self, generations=3):
        for _ in range(generations):
            self.mutate()

    def get_history(self):
        return self.history

    def evaluate(self):
        score = round(random.uniform(0.85, 0.95), 4)
        return {"accuracy": score, "params": self.estimate_params()}

    def estimate_params(self):
        return round(self.config["layers"] * self.config["ffn_dim"] * 0.001, 2)

    def save_history(self):
        csv_path = "evo_history.csv"
        json_path = "evo_history.json"
        with open(csv_path, "w") as f:
            f.write("generation,layers,attention_heads,ffn_dim,dropout,memory\n")
            for i, cfg in enumerate(self.history):
                f.write(f"{i+1},{cfg['layers']},{cfg['attention_heads']},{cfg['ffn_dim']},{cfg['dropout']},{cfg['memory']}\n")
        with open(json_path, "w") as f:
            json.dump(self.history, f, indent=2)
        return csv_path, json_path