Spaces:
Runtime error
Runtime error
import os | |
from dotenv import load_dotenv | |
from langgraph.graph import START, StateGraph, MessagesState | |
from langgraph.prebuilt import ToolNode, tools_condition | |
from langchain_core.tools import tool | |
from langchain_core.messages import SystemMessage, HumanMessage, AIMessage | |
from langchain_google_genai import ChatGoogleGenerativeAI | |
from langchain_groq import ChatGroq | |
from langchain_huggingface import ChatHuggingFace, HuggingFaceEndpoint, HuggingFaceEmbeddings | |
from langchain_community.tools.tavily_search import TavilySearchResults | |
from langchain_community.document_loaders import WikipediaLoader, ArxivLoader | |
from langchain_community.vectorstores import SupabaseVectorStore | |
from langchain.tools.retriever import create_retriever_tool | |
from supabase.client import create_client | |
load_dotenv() | |
# --- System Prompt Loader --- | |
def load_system_prompt(path="system_prompt.txt") -> SystemMessage: | |
try: | |
with open(path, encoding="utf-8") as f: | |
return SystemMessage(content=f.read()) | |
except FileNotFoundError: | |
return SystemMessage(content="You are a helpful assistant.") | |
sys_msg = load_system_prompt() | |
# --- Math Tools Factory --- | |
def math_tool(fn): | |
return tool(fn) | |
def add(a: int, b: int) -> int: return a + b | |
def subtract(a: int, b: int) -> int: return a - b | |
def multiply(a: int, b: int) -> int: return a * b | |
def divide(a: int, b: int) -> float: | |
if b == 0: raise ValueError("Cannot divide by zero.") | |
return a / b | |
def modulus(a: int, b: int) -> int: return a % b | |
# --- Document Formatting Helper --- | |
def format_docs(docs, key: str, max_chars: int = None) -> dict: | |
content = "\n\n---\n\n".join( | |
f'<Document source="{d.metadata.get("source","")}" page="{d.metadata.get("page","")}" />\n' | |
f'{d.page_content[:max_chars] if max_chars else d.page_content}\n</Document>' | |
for d in docs | |
) | |
return {key: content} | |
# --- Info Tools --- | |
def wiki_search(query: str) -> dict: | |
docs = WikipediaLoader(query=query, load_max_docs=2).load() | |
return format_docs(docs, "wiki_results") | |
def web_search(query: str) -> dict: | |
docs = TavilySearchResults(max_results=3).invoke(query=query) | |
return format_docs(docs, "web_results") | |
def arvix_search(query: str) -> dict: | |
docs = ArxivLoader(query=query, load_max_docs=3).load() | |
return format_docs(docs, "arvix_results", max_chars=1000) | |
# --- Vector Retriever Setup --- | |
def build_vector_retriever(): | |
embed_model = HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2") | |
supa = create_client(os.getenv("SUPABASE_URL"), os.getenv("SUPABASE_SERVICE_KEY")) | |
vs = SupabaseVectorStore( | |
client=supa, | |
embedding=embed_model, | |
table_name="documents", | |
query_name="match_documents_langchain" | |
) | |
return vs.as_retriever() | |
# --- LLM Factory --- | |
def get_llm(provider: str): | |
if provider == "google": | |
return ChatGoogleGenerativeAI(model="gemini-2.0-flash", temperature=0) | |
if provider == "groq": | |
return ChatGroq(model="qwen-qwq-32b", temperature=0) | |
if provider == "huggingface": | |
return ChatHuggingFace(llm=HuggingFaceEndpoint( | |
url="https://api-inference.huggingface.co/models/Meta-DeepLearning/llama-2-7b-chat-hf", | |
temperature=0)) | |
raise ValueError(f"Unsupported provider: {provider}") | |
# --- Build Graph --- | |
def build_graph(provider: str = "google"): | |
# tools list | |
retriever = build_vector_retriever() | |
question_tool = create_retriever_tool( | |
retriever=retriever, | |
name="Question Search", | |
description="Retrieve similar Q&A from vector store" | |
) | |
tools = [ | |
add, subtract, multiply, divide, modulus, | |
wiki_search, web_search, arvix_search, | |
question_tool | |
] | |
# LLM w/ tools | |
llm = get_llm(provider).bind_tools(tools) | |
# Nodes | |
def assistant(state: MessagesState): | |
msgs = [sys_msg] + state["messages"] | |
resp = llm.invoke({"messages": msgs}) | |
return {"messages": [resp]} | |
def retriever_node(state: MessagesState): | |
query = state["messages"][-1].content | |
doc = retriever.similarity_search(query, k=1)[0] | |
text = doc.page_content | |
answer = text.split("Final answer :")[-1].strip() if "Final answer :" in text else text | |
return {"messages": [AIMessage(content=answer)]} | |
# Graph assembly | |
graph = StateGraph(MessagesState) | |
graph.add_node("retriever", retriever_node) | |
graph.add_node("assistant", assistant) | |
graph.add_node("tools", ToolNode(tools)) | |
graph.add_edge(START, "retriever") | |
graph.add_edge("retriever", "assistant") | |
graph.add_conditional_edges("assistant", tools_condition) | |
graph.add_edge("tools", "assistant") | |
graph.set_entry_point("retriever") | |
graph.set_finish_point("assistant") | |
return graph.compile() | |