Irfshaikh's picture
Update agent.py
1a7cf31 verified
import os
import functools
from dotenv import load_dotenv
from supabase.client import create_client, Client
from langgraph.graph import START, StateGraph, MessagesState
from langgraph.prebuilt import tools_condition, ToolNode
from langchain_core.tools import tool
from langchain_core.messages import SystemMessage, HumanMessage, AIMessage
from langchain_google_genai import ChatGoogleGenerativeAI
from langchain_groq import ChatGroq
from langchain_huggingface import ChatHuggingFace, HuggingFaceEndpoint, HuggingFaceEmbeddings
from langchain_community.tools.tavily_search import TavilySearchResults
from langchain_community.document_loaders import WikipediaLoader, ArxivLoader
from langchain_community.vectorstores import SupabaseVectorStore
from langchain.tools.retriever import create_retriever_tool
load_dotenv()
def _format_search_results(docs, label: str, truncate: int = None) -> dict:
"""Helper to format document search results."""
entries = []
for d in docs:
content = d.page_content if truncate is None else d.page_content[:truncate]
entries.append(
f'<Document source="{d.metadata.get("source","")}" '
f'page="{d.metadata.get("page","")}"/>\n{content}\n</Document>'
)
return {label: "\n\n---\n\n".join(entries)}
@tool
def multiply(a: int, b: int) -> int:
"""Multiply two numbers.
Args:
a: first int
b: second int
"""
return a * b
@tool
def add(a: int, b: int) -> int:
"""Add two numbers.
Args:
a: first int
b: second int
"""
return a + b
@tool
def subtract(a: int, b: int) -> int:
"""Subtract two numbers.
Args:
a: first int
b: second int
"""
return a - b
@tool
def divide(a: int, b: int) -> int:
"""Divide two numbers.
Args:
a: first int
b: second int
"""
if b == 0:
raise ValueError("Cannot divide by zero.")
return a / b
@tool
def modulus(a: int, b: int) -> int:
"""Get the modulus of two numbers.
Args:
a: first int
b: second int
"""
return a % b
@tool
def wiki_search(query: str) -> str:
"""Search Wikipedia for a query and return maximum 2 results.
Args:
query: The search query."""
docs = WikipediaLoader(query=query, load_max_docs=2).load()
return _format_search_results(docs, "wiki_results")
@tool
def web_search(query: str) -> str:
"""Search Tavily for a query and return maximum 3 results.
Args:
query: The search query."""
docs = TavilySearchResults(max_results=3).invoke(query=query)
return _format_search_results(docs, "web_results")
@tool
def arvix_search(query: str) -> str:
"""Search Arxiv for a query and return maximum 3 result.
Args:
query: The search query."""
docs = ArxivLoader(query=query, load_max_docs=3).load()
return _format_search_results(docs, "arvix_results", truncate=1000)
# load the system prompt from the file
with open("system_prompt.txt", "r", encoding="utf-8") as f:
system_prompt = f.read()
# System message
sys_msg = SystemMessage(content=system_prompt)
# build a retriever once
_embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2")
_supabase: Client = create_client(
os.environ["SUPABASE_URL"], os.environ["SUPABASE_SERVICE_KEY"]
)
_vector_store = SupabaseVectorStore(
client=_supabase,
embedding=_embeddings,
table_name="documents",
query_name="match_documents_langchain",
)
_retriever = _vector_store.as_retriever()
_question_search_tool = create_retriever_tool(
retriever=_retriever,
name="Question Search",
description="A tool to retrieve similar questions from a vector store.",
)
tools = [
multiply,
add,
subtract,
divide,
modulus,
wiki_search,
web_search,
arvix_search,
_question_search_tool,
]
_LLM_PROVIDERS = {
"google": lambda: ChatGoogleGenerativeAI(model="gemini-2.0-flash", temperature=0),
"groq": lambda: ChatGroq(model="qwen-qwq-32b", temperature=0),
"huggingface": lambda: ChatHuggingFace(
llm=HuggingFaceEndpoint(
url="https://api-inference.huggingface.co/models/Meta-DeepLearning/llama-2-7b-chat-hf",
temperature=0,
)
),
}
@functools.lru_cache(maxsize=None)
def get_llm(provider: str):
"""
Retrieve and cache the LLM client for the given provider.
"""
try:
return _LLM_PROVIDERS[provider]()
except KeyError:
raise ValueError("Invalid provider. Choose 'google', 'groq' or 'huggingface'.")
def build_graph(provider: str = "google"):
"""Build the graph"""
llm = get_llm(provider).bind_tools(tools)
def assistant(state: MessagesState):
"""Assistant node"""
return {"messages": [llm.invoke(state["messages"])]}
def retriever(state: MessagesState):
query = state["messages"][-1].content
doc = _retriever.similarity_search(query, k=1)[0]
content = doc.page_content
if "Final answer :" in content:
answer = content.split("Final answer :")[-1].strip()
else:
answer = content.strip()
return {"messages": [AIMessage(content=answer)]}
graph = StateGraph(MessagesState)
graph.add_node("retriever", retriever)
graph.set_entry_point("retriever")
graph.set_finish_point("retriever")
return graph.compile()