Spaces:
Runtime error
Runtime error
import os | |
import functools | |
from dotenv import load_dotenv | |
from supabase.client import create_client, Client | |
from langgraph.graph import START, StateGraph, MessagesState | |
from langgraph.prebuilt import tools_condition, ToolNode | |
from langchain_core.tools import tool | |
from langchain_core.messages import SystemMessage, HumanMessage, AIMessage | |
from langchain_google_genai import ChatGoogleGenerativeAI | |
from langchain_groq import ChatGroq | |
from langchain_huggingface import ChatHuggingFace, HuggingFaceEndpoint, HuggingFaceEmbeddings | |
from langchain_community.tools.tavily_search import TavilySearchResults | |
from langchain_community.document_loaders import WikipediaLoader, ArxivLoader | |
from langchain_community.vectorstores import SupabaseVectorStore | |
from langchain.tools.retriever import create_retriever_tool | |
load_dotenv() | |
def _format_search_results(docs, label: str, truncate: int = None) -> dict: | |
"""Helper to format document search results.""" | |
entries = [] | |
for d in docs: | |
content = d.page_content if truncate is None else d.page_content[:truncate] | |
entries.append( | |
f'<Document source="{d.metadata.get("source","")}" ' | |
f'page="{d.metadata.get("page","")}"/>\n{content}\n</Document>' | |
) | |
return {label: "\n\n---\n\n".join(entries)} | |
def multiply(a: int, b: int) -> int: | |
"""Multiply two numbers. | |
Args: | |
a: first int | |
b: second int | |
""" | |
return a * b | |
def add(a: int, b: int) -> int: | |
"""Add two numbers. | |
Args: | |
a: first int | |
b: second int | |
""" | |
return a + b | |
def subtract(a: int, b: int) -> int: | |
"""Subtract two numbers. | |
Args: | |
a: first int | |
b: second int | |
""" | |
return a - b | |
def divide(a: int, b: int) -> int: | |
"""Divide two numbers. | |
Args: | |
a: first int | |
b: second int | |
""" | |
if b == 0: | |
raise ValueError("Cannot divide by zero.") | |
return a / b | |
def modulus(a: int, b: int) -> int: | |
"""Get the modulus of two numbers. | |
Args: | |
a: first int | |
b: second int | |
""" | |
return a % b | |
def wiki_search(query: str) -> str: | |
"""Search Wikipedia for a query and return maximum 2 results. | |
Args: | |
query: The search query.""" | |
docs = WikipediaLoader(query=query, load_max_docs=2).load() | |
return _format_search_results(docs, "wiki_results") | |
def web_search(query: str) -> str: | |
"""Search Tavily for a query and return maximum 3 results. | |
Args: | |
query: The search query.""" | |
docs = TavilySearchResults(max_results=3).invoke(query=query) | |
return _format_search_results(docs, "web_results") | |
def arvix_search(query: str) -> str: | |
"""Search Arxiv for a query and return maximum 3 result. | |
Args: | |
query: The search query.""" | |
docs = ArxivLoader(query=query, load_max_docs=3).load() | |
return _format_search_results(docs, "arvix_results", truncate=1000) | |
# load the system prompt from the file | |
with open("system_prompt.txt", "r", encoding="utf-8") as f: | |
system_prompt = f.read() | |
# System message | |
sys_msg = SystemMessage(content=system_prompt) | |
# build a retriever once | |
_embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2") | |
_supabase: Client = create_client( | |
os.environ["SUPABASE_URL"], os.environ["SUPABASE_SERVICE_KEY"] | |
) | |
_vector_store = SupabaseVectorStore( | |
client=_supabase, | |
embedding=_embeddings, | |
table_name="documents", | |
query_name="match_documents_langchain", | |
) | |
_retriever = _vector_store.as_retriever() | |
_question_search_tool = create_retriever_tool( | |
retriever=_retriever, | |
name="Question Search", | |
description="A tool to retrieve similar questions from a vector store.", | |
) | |
tools = [ | |
multiply, | |
add, | |
subtract, | |
divide, | |
modulus, | |
wiki_search, | |
web_search, | |
arvix_search, | |
_question_search_tool, | |
] | |
_LLM_PROVIDERS = { | |
"google": lambda: ChatGoogleGenerativeAI(model="gemini-2.0-flash", temperature=0), | |
"groq": lambda: ChatGroq(model="qwen-qwq-32b", temperature=0), | |
"huggingface": lambda: ChatHuggingFace( | |
llm=HuggingFaceEndpoint( | |
url="https://api-inference.huggingface.co/models/Meta-DeepLearning/llama-2-7b-chat-hf", | |
temperature=0, | |
) | |
), | |
} | |
def get_llm(provider: str): | |
""" | |
Retrieve and cache the LLM client for the given provider. | |
""" | |
try: | |
return _LLM_PROVIDERS[provider]() | |
except KeyError: | |
raise ValueError("Invalid provider. Choose 'google', 'groq' or 'huggingface'.") | |
def build_graph(provider: str = "google"): | |
"""Build the graph""" | |
llm = get_llm(provider).bind_tools(tools) | |
def assistant(state: MessagesState): | |
"""Assistant node""" | |
return {"messages": [llm.invoke(state["messages"])]} | |
def retriever(state: MessagesState): | |
query = state["messages"][-1].content | |
doc = _retriever.similarity_search(query, k=1)[0] | |
content = doc.page_content | |
if "Final answer :" in content: | |
answer = content.split("Final answer :")[-1].strip() | |
else: | |
answer = content.strip() | |
return {"messages": [AIMessage(content=answer)]} | |
graph = StateGraph(MessagesState) | |
graph.add_node("retriever", retriever) | |
graph.set_entry_point("retriever") | |
graph.set_finish_point("retriever") | |
return graph.compile() | |