File size: 2,854 Bytes
d21e97b f33edaa d21e97b b73f6ae 126f1a6 d21e97b 77631e1 d21e97b 126f1a6 d21e97b 10981ed d21e97b e68c49d d21e97b 10981ed 620c237 126f1a6 706abd1 d21e97b b46415a 706abd1 b46415a 706abd1 0e44054 7333f3f 0e44054 d21e97b f33edaa |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 |
import streamlit as st
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from sklearn.cluster import KMeans
# ๋ฐ์ดํฐ ์์ฑ
np.random.seed(42)
num_samples = 30
traffic_centers = [(20, 20), (80, 80)]
nature_centers = [(0, 80), (80, 0)]
population_centers = [(0, 0), (50, 50), (100, 100)]
traffic_data = np.random.uniform(0, 100, (num_samples * len(traffic_centers), 2))
nature_data = np.random.uniform(0, 100, (num_samples * len(nature_centers), 2))
population_data = np.random.uniform(0, 100, (num_samples * len(population_centers), 2))
traffic_df = pd.DataFrame(traffic_data, columns=["x", "y"])
nature_df = pd.DataFrame(nature_data, columns=["x", "y"])
population_df = pd.DataFrame(population_data, columns=["x", "y"])
def apply_kmeans(data, k):
kmeans = KMeans(n_clusters=k, random_state=42).fit(data)
centroids = kmeans.cluster_centers_
labels = kmeans.labels_
return centroids, labels
def main():
st.title("K-means Clustering Simulator")
# Global variables declaration
global traffic_df, nature_df, population_df
if st.button("Initialize Datasets"):
traffic_data = np.random.uniform(0, 100, (num_samples * len(traffic_centers), 2))
nature_data = np.random.uniform(0, 100, (num_samples * len(nature_centers), 2))
population_data = np.random.uniform(0, 100, (num_samples * len(population_centers), 2))
traffic_df = pd.DataFrame(traffic_data, columns=["x", "y"])
nature_df = pd.DataFrame(nature_data, columns=["x", "y"])
population_df = pd.DataFrame(population_data, columns=["x", "y"])
datasets = st.multiselect("Choose datasets:", ["Traffic Accessibility", "Natural Environment", "Population Density"])
k_value = st.slider("Select k value:", 1, 10)
dataset_mapping = {
"Traffic Accessibility": (traffic_df, 'o'),
"Natural Environment": (nature_df, 'x'),
"Population Density": (population_df, '^')
}
# Check if any dataset is selected
if datasets:
combined_data = pd.concat([dataset_mapping[dataset_name][0] for dataset_name in datasets])
centroids, labels = apply_kmeans(combined_data.values, k_value)
fig, ax = plt.subplots(figsize=(8, 8))
for dataset_name in datasets:
data, marker = dataset_mapping[dataset_name]
subset_labels = labels[:len(data)]
ax.scatter(data['x'], data['y'], c=subset_labels, cmap='viridis', marker=marker, label=dataset_name)
labels = labels[len(data):]
ax.scatter(centroids[:, 0], centroids[:, 1], s=200, c='red', marker='X')
ax.set_xlim(0, 100)
ax.set_ylim(0, 100)
ax.set_title(f"K-means clustering result (k={k_value})")
ax.legend()
st.pyplot(fig)
if __name__ == "__main__":
main() |