File size: 2,582 Bytes
d21e97b b73f6ae 0fdf686 d21e97b 620c237 b7e5ed8 0b844d2 620c237 0b844d2 620c237 d21e97b 620c237 b7e5ed8 b46415a d21e97b b46415a 0b844d2 7333f3f d21e97b 7333f3f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 |
import streamlit as st
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from sklearn.cluster import KMeans
# Generate the datasets
np.random.seed(42)
num_samples = 30
traffic_centers = [(20, 20), (80, 80)]
nature_centers = [(0, 80), (80, 0)]
population_centers = [(0, 0), (50, 50), (100, 100)]
traffic_data = [np.random.normal(center, 10, (num_samples, 2)) for center in traffic_centers]
nature_data = [np.random.normal(center, 10, (num_samples, 2)) for center in nature_centers]
population_data = [np.random.normal(center, 10, (num_samples, 2)) for center in population_centers]
traffic_df = pd.DataFrame(np.vstack(traffic_data), columns=["x", "y"])
nature_df = pd.DataFrame(np.vstack(nature_data), columns=["x", "y"])
population_df = pd.DataFrame(np.vstack(population_data), columns=["x", "y"])
def apply_kmeans(data, k):
kmeans = KMeans(n_clusters=k, random_state=42).fit(data)
centroids = kmeans.cluster_centers_
labels = kmeans.labels_
return centroids, labels
def generate_data():
global traffic_df, nature_df, population_df
# λλ€λ°μ΄ν° μμ±
traffic_data = np.random.uniform(0, 100, (num_samples, 2))
nature_data = np.random.uniform(0, 100, (num_samples, 2))
population_data = np.random.uniform(0, 100, (num_samples, 2))
traffic_df = pd.DataFrame(traffic_data, columns=["x", "y"])
nature_df = pd.DataFrame(nature_data, columns=["x", "y"])
population_df = pd.DataFrame(population_data, columns=["x", "y"])
def main():
st.title("K-means Clustering Simulator")
if st.button("Initialize Datasets"):
generate_data()
datasets = st.multiselect("Choose datasets:", ["κ΅ν΅μ κ·Όμ±", "μμ°νκ²½", "μΈκ΅¬λ°μ§λ"])
k_value = st.slider("Select k value:", 1, 10)
dataset_mapping = {
"κ΅ν΅μ κ·Όμ±": traffic_df,
"μμ°νκ²½": nature_df,
"μΈκ΅¬λ°μ§λ": population_df
}
# μ무 κ°λ μμλ
if datasets:
combined_data = pd.concat([dataset_mapping[dataset_name] for dataset_name in datasets])
fig, ax = plt.subplots(figsize=(8, 8))
centroids, labels = apply_kmeans(combined_data.values, k_value)
ax.scatter(combined_data['x'], combined_data['y'], c=labels, cmap='viridis')
ax.scatter(centroids[:, 0], centroids[:, 1], s=200, c='red', marker='X')
ax.set_xlim(0, 100)
ax.set_ylim(0, 100)
ax.set_title(f"K-means clustering result (k={k_value})")
st.pyplot(fig)
if __name__ == "__main__":
main()
|