File size: 5,443 Bytes
2008367
 
6e0397b
e41b8bc
2008367
130360f
2145ed0
130360f
2008367
130360f
 
2008367
 
 
 
 
 
 
 
130360f
 
 
 
 
2008367
130360f
2008367
 
 
 
 
e41b8bc
130360f
2008367
 
 
130360f
6e0397b
e41b8bc
 
130360f
2008367
 
 
 
e41b8bc
8a72144
e41b8bc
 
8a72144
e41b8bc
 
130360f
e41b8bc
 
2008367
 
 
 
 
e41b8bc
8a72144
130360f
 
 
 
 
 
 
 
2008367
 
 
130360f
 
2008367
 
2145ed0
 
e41b8bc
2008367
130360f
 
e41b8bc
130360f
 
 
 
2145ed0
130360f
2008367
 
 
 
130360f
 
 
 
 
 
 
 
2008367
 
 
 
2145ed0
 
 
e41b8bc
2145ed0
 
2008367
 
 
130360f
2008367
 
 
 
 
130360f
e41b8bc
 
2145ed0
e41b8bc
130360f
2145ed0
 
 
 
 
 
1ea4540
e41b8bc
2008367
2145ed0
 
 
130360f
 
2145ed0
130360f
e41b8bc
2145ed0
 
2008367
130360f
2008367
 
 
 
 
130360f
 
 
 
 
 
2008367
 
 
130360f
 
 
2145ed0
 
 
 
130360f
 
 
2008367
6e0397b
130360f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
from fastapi import FastAPI, HTTPException
from fastapi.responses import StreamingResponse
from pydantic import BaseModel
from transformers import pipeline, TextStreamer
import torch
import re
import threading
import queue
import time
import random
import duckduckgo_search
from duckduckgo_search import DDGS

# ------------------------
# Config
# ------------------------
MAIN_MODEL = "deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B"
QUERY_MODEL = "HuggingFaceTB/SmolLM2-360M-Instruct"
SUMMARY_MODEL = "HuggingFaceTB/SmolLM2-360M-Instruct"
DEVICE = 0 if torch.cuda.is_available() else "cpu"

DEEPSEEK_MAX_TOKENS = 64000
SMOLLM_MAX_TOKENS = 4192

KG_UPDATE_INTERVAL = 60  # seconds
knowledge_graph = {}

# ------------------------
# API + Models Init
# ------------------------
app = FastAPI()

print("[Init] Loading models...")
generator = pipeline("text-generation", model=MAIN_MODEL, device=DEVICE)
query_generator = pipeline("text-generation", model=QUERY_MODEL, device=DEVICE)
summarizer = pipeline("text-generation", model=SUMMARY_MODEL, device=DEVICE)
print("[Init] Models loaded.")

class ModelInput(BaseModel):
    prompt: str
    max_new_tokens: int = DEEPSEEK_MAX_TOKENS

# ------------------------
# KG Functions
# ------------------------
def generate_dynamic_query():
    prompt = (
        "Generate a short, specific search query about technology, startups, AI, or science. "
        "Be creative, realistic, and output only the query with no extra words."
    )
    output = query_generator(
        prompt,
        max_new_tokens=SMOLLM_MAX_TOKENS,
        truncation=True,
        do_sample=True,
        temperature=1.0,
        top_p=0.9
    )[0]["generated_text"].strip()
    query = output.split("\n")[0]
    query = re.sub(r"^Generate.*?:", "", query).strip()
    return query

def summarize_text(text):
    summary_prompt = f"Summarize this in 3 concise sentences:\n\n{text}"
    return summarizer(
        summary_prompt,
        max_new_tokens=SMOLLM_MAX_TOKENS,
        truncation=True
    )[0]["generated_text"].strip()

def search_ddg(query):
    with DDGS() as ddgs:
        results = list(ddgs.text(query, max_results=5))
    combined = " ".join(r["body"] for r in results if "body" in r)
    return combined.strip()

def kg_updater():
    while True:
        try:
            query = generate_dynamic_query()
            print(f"[KG Updater] Searching DDG for query: {query}")
            raw_text = search_ddg(query)
            if len(raw_text) < 50:
                print("[KG Updater] Too little info found, retrying next cycle...")
            else:
                summary = summarize_text(raw_text)
                knowledge_graph[query] = summary
                print(f"[KG Updater] Knowledge graph updated for query: {query}")
        except Exception as e:
            print(f"[KG Updater ERROR] {e}")
        time.sleep(KG_UPDATE_INTERVAL)

threading.Thread(target=kg_updater, daemon=True).start()

def inject_relevant_kg(prompt):
    relevant_info = ""
    for k, v in knowledge_graph.items():
        if any(word.lower() in prompt.lower() for word in k.split()):
            relevant_info += f"\n[KG:{k}] {v}"
    if relevant_info:
        return f"{prompt}\n\nRelevant background info:\n{relevant_info}"
    return prompt

# ------------------------
# Streaming Generation
# ------------------------
@app.post("/generate/stream")
async def generate_stream(input: ModelInput):
    q = queue.Queue()

    def run_generation():
        try:
            tokenizer = generator.tokenizer

            def enqueue_token(token_ids):
                if hasattr(token_ids, "tolist"):
                    token_ids = token_ids.tolist()
                text = tokenizer.decode(token_ids, skip_special_tokens=True)
                q.put(text)

            streamer = TextStreamer(tokenizer, skip_prompt=True)
            streamer.put = enqueue_token  # intercept tokens

            enriched_prompt = inject_relevant_kg(input.prompt)
            generator(
                enriched_prompt,
                max_new_tokens=min(input.max_new_tokens, DEEPSEEK_MAX_TOKENS),
                do_sample=False,
                streamer=streamer
            )
        except Exception as e:
            q.put(f"[ERROR] {e}")
        finally:
            q.put(None)

    threading.Thread(target=run_generation, daemon=True).start()

    async def event_generator():
        while True:
            token = q.get()
            if token is None:
                break
            yield token

    return StreamingResponse(event_generator(), media_type="text/plain")

# ------------------------
# Non-stream endpoint
# ------------------------
@app.post("/generate")
async def generate_text(input: ModelInput):
    try:
        enriched_prompt = inject_relevant_kg(input.prompt)
        output = generator(
            enriched_prompt,
            max_new_tokens=min(input.max_new_tokens, DEEPSEEK_MAX_TOKENS),
            do_sample=False
        )[0]["generated_text"]
        return {"generated_text": output}
    except Exception as e:
        raise HTTPException(status_code=500, detail=str(e))

# ------------------------
# KG endpoint
# ------------------------
@app.get("/knowledge")
async def get_knowledge():
    return knowledge_graph

# ------------------------
# Root endpoint
# ------------------------
@app.get("/")
async def root():
    return {"message": "Welcome to the Streaming Model API with KG Updater!"}