File size: 7,352 Bytes
6dfbc1e
02a2d80
 
d3311ac
8a8d9dd
 
 
 
0189c6f
8dfc9e7
597f25d
 
 
26608f4
 
615b3ed
 
49c2234
15fa853
cdbe11c
a454a72
6dfbc1e
6631b7b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bdb8be4
6631b7b
 
 
 
 
 
 
 
 
8a8d9dd
 
8a2dda5
49c2234
 
 
 
e5ae991
e8a1dae
 
5597954
a454a72
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8a8d9dd
a454a72
 
 
 
e8a1dae
a454a72
 
 
 
 
 
8a8d9dd
6e6b1e1
15fa853
ffdd46f
 
 
 
597f25d
f408c43
a454a72
597f25d
d71c024
8e71560
e7019aa
15fa853
f408c43
 
814bec8
26608f4
2a0ad25
a454a72
15fa853
e7019aa
15fa853
597f25d
a454a72
597f25d
a454a72
15fa853
03d1abd
597f25d
03d1abd
 
 
 
 
 
597f25d
8a8d9dd
02a2d80
 
 
 
 
 
6dfbc1e
80d2c6b
 
 
02a2d80
6dfbc1e
8a8d9dd
02a2d80
 
 
 
 
 
597f25d
02a2d80
 
26608f4
548b3b7
26608f4
6dfbc1e
8a8d9dd
 
21dbe18
 
02a2d80
26608f4
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
import os
import time
import streamlit as st
from langchain.chat_models import ChatOpenAI
from langchain.document_loaders import PyPDFLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.schema import Document as LangchainDocument
from langchain.chains import RetrievalQA
import torch
from langchain_core.retrievers import BaseRetriever
from langchain_core.documents import Document
from typing import List
from pydantic import Field
from sentence_transformers import SentenceTransformer
import numpy as np
from langchain.indexes.vectorstore import VectorstoreIndexCreator

from sentence_transformers import SentenceTransformer
import faiss


# ----------------- تنظیمات صفحه -----------------
st.set_page_config(page_title="چت‌ بات توانا", page_icon="🪖", layout="wide")

st.markdown("""
    <style>
    @import url('https://fonts.googleapis.com/css2?family=Vazirmatn:wght@400;700&display=swap');
    html, body, [class*="css"] {
        font-family: 'Vazirmatn', Tahoma, sans-serif;
        direction: rtl;
        text-align: right;
    }
    .stApp {
        background: url("./military_bg.jpeg") no-repeat center center fixed;
        background-size: cover;
        backdrop-filter: blur(2px);
    }
    .stChatMessage {
        background-color: rgba(255,255,255,0.8);
        border: 1px solid #4e8a3e;
        border-radius: 12px;
        padding: 16px;
        margin-bottom: 15px;
        box-shadow: 0 4px 10px rgba(0,0,0,0.2);
        animation: fadeIn 0.4s ease-in-out;
    }
    .stTextInput > div > input, .stTextArea textarea {
        background-color: rgba(255,255,255,0.9) !important;
        border-radius: 8px !important;
        direction: rtl;
        text-align: right;
        font-family: 'Vazirmatn', Tahoma;
    }
    .stButton>button {
        background-color: #4e8a3e !important;
        color: white !important;
        font-weight: bold;
        border-radius: 10px;
        padding: 8px 20px;
        transition: 0.3s;
    }
    .stButton>button:hover {
        background-color: #3c6d30 !important;
    }
    .header-text {
        text-align: center;
        margin-top: 20px;
        margin-bottom: 40px;
        background-color: rgba(255, 255, 255, 0.75);
        padding: 20px;
        border-radius: 20px;
        box-shadow: 0 4px 12px rgba(0,0,0,0.2);
    }
    .header-text h1 {
        font-size: 42px;
        color: #2c3e50;
        margin: 0;
        font-weight: bold;
    }
    .subtitle {
        font-size: 18px;
        color: #34495e;
        margin-top: 8px;
    }
    @keyframes fadeIn {
        from { opacity: 0; transform: translateY(10px); }
        to { opacity: 1; transform: translateY(0); }
    }
    </style>
""", unsafe_allow_html=True)

col1, col2, col3 = st.columns([1, 2, 1])
with col2:
    st.image("army.png", width=240)

st.markdown("""
    <div class="header-text">
        <h1>چت‌ بات توانا</h1>
        <div class="subtitle">دستیار هوشمند برای تصمیم‌گیری در میدان نبرد</div>
    </div>
""", unsafe_allow_html=True)

# ----------------- لود PDF و ساخت ایندکس -----------------

@st.cache_resource
def get_pdf_index():
    with st.spinner('📄 در حال پردازش فایل PDF...'):
        loader = [PyPDFLoader('test1.pdf')]

        model_name = "togethercomputer/m2-bert-80M-8k-retrieval"  
        model = SentenceTransformer(model_name, trust_remote_code=True)  

        splitter = RecursiveCharacterTextSplitter(chunk_size=300, chunk_overlap=0)
        texts = []
        for doc in loader:
            texts.extend(splitter.split_text(doc.page_content))

        progress_bar = st.progress(0)
        total_docs = len(texts)

        embeddings = []
        batch_size = 128
        for i in range(0, total_docs, batch_size):
            batch_texts = texts[i:i+batch_size]
            batch_embeddings = model.encode(batch_texts, convert_to_numpy=True)
            embeddings.extend(batch_embeddings)

            progress_bar.progress(min((i + batch_size) / total_docs, 1.0))

        time.sleep(1)
        progress_bar.empty()

        embeddings = np.array(embeddings)
        index = faiss.IndexFlatL2(embeddings.shape[1]) 
        index.add(embeddings)

        return VectorstoreIndexCreator(
            embedding=model.encode,
            text_splitter=splitter
        ).from_loaders(loader)


# ----------------- تعریف LLM از Groq -----------------
llm = ChatOpenAI(
    base_url="https://api.together.xyz/v1",
    api_key='0291f33aee03412a47fa5d8e562e515182dcc5d9aac5a7fb5eefdd1759005979',
    model="meta-llama/Llama-3.3-70B-Instruct-Turbo-Free"
)


# ----------------- تعریف SimpleRetriever -----------------
class SimpleRetriever(BaseRetriever):
    documents: List[Document] = Field(...)
    embeddings: List[np.ndarray] = Field(...)
    index: faiss.Index

    def _get_relevant_documents(self, query: str) -> List[Document]:
        sentence_model = SentenceTransformer("togethercomputer/m2-bert-80M-8k-retrieval", trust_remote_code=True)
        query_embedding = sentence_model.encode(query, convert_to_numpy=True)

        # جستجوی اسناد مشابه
        _, indices = self.index.search(np.expand_dims(query_embedding, axis=0), 5)  # پیدا کردن 5 سند مشابه

        return [self.documents[i] for i in indices[0]]


# ----------------- ساخت Index -----------------
documents, embeddings, index = get_pdf_index()
retriever = SimpleRetriever(documents=documents, embeddings=embeddings, index=index)

# ----------------- ساخت Chain -----------------
chain = RetrievalQA.from_chain_type(
    llm=llm,
    retriever=retriever,
    chain_type="stuff",
    input_key="question"
)

# ----------------- استیت برای چت -----------------
if 'messages' not in st.session_state:
    st.session_state.messages = []

if 'pending_prompt' not in st.session_state:
    st.session_state.pending_prompt = None

# ----------------- نمایش پیام‌های قبلی -----------------
for msg in st.session_state.messages:
    with st.chat_message(msg['role']):
        st.markdown(f"🗨️ {msg['content']}", unsafe_allow_html=True)

# ----------------- ورودی چت -----------------
prompt = st.chat_input("سوالی در مورد فایل بپرس...")

if prompt:
    st.session_state.messages.append({'role': 'user', 'content': prompt})
    st.session_state.pending_prompt = prompt
    st.rerun()

# ----------------- پاسخ مدل -----------------
if st.session_state.pending_prompt:
    with st.chat_message('ai'):
        thinking = st.empty()
        thinking.markdown("🤖 در حال فکر کردن  ...")

        try:
            response = chain.run(f"سوال: {st.session_state.pending_prompt}")
            answer = response.strip()
        except Exception as e:
            answer = f"خطا در پاسخ‌دهی: {str(e)}"

        thinking.empty()

        full_response = ""
        placeholder = st.empty()
        for word in answer.split():
            full_response += word + " "
            placeholder.markdown(full_response + "▌")
            time.sleep(0.03)

        placeholder.markdown(full_response)
        st.session_state.messages.append({'role': 'ai', 'content': full_response})
        st.session_state.pending_prompt = None