Spaces:
Running
Running
File size: 1,053 Bytes
9857823 23a791e 9857823 23a791e 7425484 23a791e 9857823 d33c9ef 9857823 23a791e 7425484 9857823 d33c9ef 7425484 23a791e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 |
import streamlit as st
import torch
from diffusers import DiffusionPipeline
import tempfile
# Load the text-to-video model
st.write("Loading model... (first run may take a few minutes)")
model_id = "damo-vilab/text-to-video-ms-1.7b"
pipe = DiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16)
pipe.to("cpu") # Stay on CPU since we don’t have a GPU
st.title("Text-to-Video Generator")
prompt = st.text_input("Enter a text prompt for the video:")
frames = st.slider("Number of frames (video length)", min_value=8, max_value=24, value=16)
if st.button("Generate Video") and prompt:
with st.spinner("Generating video... this may take a while on CPU"):
result = pipe(prompt=prompt, num_frames=frames, num_inference_steps=20)
video_frames = result.frames # List of PIL images
# Save frames as video file
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp4") as temp_file:
video_path = temp_file.name
result.export_to_video(video_path, fps=8)
st.video(video_path) |