Spaces:
Runtime error
Runtime error
File size: 8,098 Bytes
ba58eb0 029bab4 d8baef5 029bab4 d3607a8 d8baef5 5c9ed90 d8baef5 ba58eb0 029bab4 d3607a8 029bab4 d3607a8 029bab4 d3607a8 ba58eb0 029bab4 ba58eb0 d3607a8 029bab4 d3607a8 029bab4 ba58eb0 029bab4 d3607a8 029bab4 d8baef5 029bab4 d8baef5 029bab4 d8baef5 029bab4 ba58eb0 d8baef5 ba58eb0 029bab4 ba58eb0 029bab4 5c9ed90 ba58eb0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 |
# import gradio as gr
# import torch
# from PIL import Image
# from model import CRM
# from inference import generate3d
# import numpy as np
# # Load model
# crm_path = "CRM.pth" # Make sure the model is uploaded to the Space
# model = CRM(torch.load(crm_path, map_location="cpu"))
# model = model.to("cuda:0" if torch.cuda.is_available() else "cpu")
# def generate_3d(image_path, seed=1234, scale=5.5, step=30):
# image = Image.open(image_path).convert("RGB")
# np_img = np.array(image)
# glb_path = generate3d(model, np_img, np_img, "cuda:0" if torch.cuda.is_available() else "cpu")
# return glb_path
# iface = gr.Interface(
# fn=generate_3d,
# inputs=gr.Image(type="filepath"),
# outputs=gr.Model3D(),
# title="Convolutional Reconstruction Model (CRM)",
# description="Upload an image to generate a 3D model."
# )
# iface.launch()
#############2nd################3
# import os
# import torch
# import gradio as gr
# from huggingface_hub import hf_hub_download
# from model import CRM # Make sure this matches your model file structure
# # Define model details
# REPO_ID = "Mariam-Elz/CRM" # Hugging Face model repo
# MODEL_FILES = {
# "ccm-diffusion": "ccm-diffusion.pth",
# "pixel-diffusion": "pixel-diffusion.pth",
# "CRM": "CRM.pth"
# }
# DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
# # Download models from Hugging Face if not already present
# MODEL_DIR = "./models"
# os.makedirs(MODEL_DIR, exist_ok=True)
# for name, filename in MODEL_FILES.items():
# model_path = os.path.join(MODEL_DIR, filename)
# if not os.path.exists(model_path):
# print(f"Downloading {filename}...")
# hf_hub_download(repo_id=REPO_ID, filename=filename, local_dir=MODEL_DIR)
# # Load the model
# print("Loading CRM Model...")
# model = CRM()
# model.load_state_dict(torch.load(os.path.join(MODEL_DIR, MODEL_FILES["CRM"]), map_location=DEVICE))
# model.to(DEVICE)
# model.eval()
# print("✅ Model Loaded Successfully!")
# # Define Gradio Interface
# def predict(input_image):
# with torch.no_grad():
# output = model(input_image.to(DEVICE)) # Modify based on model input format
# return output.cpu()
# demo = gr.Interface(
# fn=predict,
# inputs=gr.Image(type="pil"),
# outputs=gr.Image(type="pil"),
# title="Convolutional Reconstruction Model (CRM)",
# description="Upload an image to generate a reconstructed output."
# )
# if __name__ == "__main__":
# demo.launch()
########################3rd-MAIN######################3
# import torch
# import gradio as gr
# import requests
# import os
# # Download model weights from Hugging Face model repo (if not already present)
# model_repo = "Mariam-Elz/CRM" # Your Hugging Face model repo
# model_files = {
# "ccm-diffusion.pth": "ccm-diffusion.pth",
# "pixel-diffusion.pth": "pixel-diffusion.pth",
# "CRM.pth": "CRM.pth",
# }
# os.makedirs("models", exist_ok=True)
# for filename, output_path in model_files.items():
# file_path = f"models/{output_path}"
# if not os.path.exists(file_path):
# url = f"https://huggingface.co/{model_repo}/resolve/main/{filename}"
# print(f"Downloading {filename}...")
# response = requests.get(url)
# with open(file_path, "wb") as f:
# f.write(response.content)
# # Load model (This part depends on how the model is defined)
# device = "cuda" if torch.cuda.is_available() else "cpu"
# def load_model():
# model_path = "models/CRM.pth"
# model = torch.load(model_path, map_location=device)
# model.eval()
# return model
# model = load_model()
# # Define inference function
# def infer(image):
# """Process input image and return a reconstructed image."""
# with torch.no_grad():
# # Assuming model expects a tensor input
# image_tensor = torch.tensor(image).to(device)
# output = model(image_tensor)
# return output.cpu().numpy()
# # Create Gradio UI
# demo = gr.Interface(
# fn=infer,
# inputs=gr.Image(type="numpy"),
# outputs=gr.Image(type="numpy"),
# title="Convolutional Reconstruction Model",
# description="Upload an image to get the reconstructed output."
# )
# if __name__ == "__main__":
# demo.launch()
#################4th##################
# import torch
# import gradio as gr
# import requests
# import os
# # Define model repo
# model_repo = "Mariam-Elz/CRM"
# # Define model files and download paths
# model_files = {
# "CRM.pth": "models/CRM.pth"
# }
# os.makedirs("models", exist_ok=True)
# # Download model files only if they don't exist
# for filename, output_path in model_files.items():
# if not os.path.exists(output_path):
# url = f"https://huggingface.co/{model_repo}/resolve/main/{filename}"
# print(f"Downloading {filename}...")
# response = requests.get(url)
# with open(output_path, "wb") as f:
# f.write(response.content)
# # Load model with low memory usage
# def load_model():
# model_path = "models/CRM.pth"
# model = torch.load(model_path, map_location="cpu") # Load on CPU to reduce memory usage
# model.eval()
# return model
# model = load_model()
# # Define inference function
# def infer(image):
# """Process input image and return a reconstructed image."""
# with torch.no_grad():
# image_tensor = torch.tensor(image).unsqueeze(0) # Add batch dimension
# image_tensor = image_tensor.to("cpu") # Keep on CPU to save memory
# output = model(image_tensor)
# return output.squeeze(0).numpy()
# # Create Gradio UI
# demo = gr.Interface(
# fn=infer,
# inputs=gr.Image(type="numpy"),
# outputs=gr.Image(type="numpy"),
# title="Convolutional Reconstruction Model",
# description="Upload an image to get the reconstructed output."
# )
# if __name__ == "__main__":
# demo.launch()
##############5TH#################
import torch
import torch.nn as nn
import gradio as gr
import requests
import os
# Define model repo
model_repo = "Mariam-Elz/CRM"
# Define model files and download paths
model_files = {
"CRM.pth": "models/CRM.pth"
}
os.makedirs("models", exist_ok=True)
# Download model files only if they don't exist
for filename, output_path in model_files.items():
if not os.path.exists(output_path):
url = f"https://huggingface.co/{model_repo}/resolve/main/{filename}"
print(f"Downloading {filename}...")
response = requests.get(url)
with open(output_path, "wb") as f:
f.write(response.content)
# Define the model architecture (you MUST replace this with your actual model)
class CRM_Model(nn.Module):
def __init__(self):
super(CRM_Model, self).__init__()
self.layer1 = nn.Conv2d(3, 64, kernel_size=3, padding=1)
self.relu = nn.ReLU()
self.layer2 = nn.Conv2d(64, 3, kernel_size=3, padding=1)
def forward(self, x):
x = self.layer1(x)
x = self.relu(x)
x = self.layer2(x)
return x
# Load model with proper architecture
def load_model():
model = CRM_Model() # Instantiate the model architecture
model_path = "models/CRM.pth"
model.load_state_dict(torch.load(model_path, map_location="cpu")) # Load weights
model.eval() # Set to evaluation mode
return model
model = load_model()
# Define inference function
def infer(image):
"""Process input image and return a reconstructed image."""
with torch.no_grad():
image_tensor = torch.tensor(image).unsqueeze(0).permute(0, 3, 1, 2).float() / 255.0 # Convert to tensor
output = model(image_tensor) # Run through model
output = output.squeeze(0).permute(1, 2, 0).numpy() * 255.0 # Convert back to image
return output.astype("uint8")
# Create Gradio UI
demo = gr.Interface(
fn=infer,
inputs=gr.Image(type="numpy"),
outputs=gr.Image(type="numpy"),
title="Convolutional Reconstruction Model",
description="Upload an image to get the reconstructed output."
)
if __name__ == "__main__":
demo.launch()
|