Spaces:
Running
on
Zero
Running
on
Zero
File size: 23,728 Bytes
9e8a757 574f683 9e8a757 574f683 9e8a757 574f683 9e8a757 574f683 9e8a757 574f683 9e8a757 574f683 9e8a757 574f683 9e8a757 574f683 9e8a757 574f683 9e8a757 574f683 9e8a757 574f683 9e8a757 574f683 9e8a757 574f683 9e8a757 574f683 9e8a757 574f683 9e8a757 574f683 9e8a757 574f683 9e8a757 574f683 9e8a757 574f683 9e8a757 574f683 9e8a757 574f683 9e8a757 574f683 9e8a757 574f683 9e8a757 574f683 9e8a757 574f683 9e8a757 574f683 9e8a757 574f683 9e8a757 574f683 9e8a757 574f683 9e8a757 574f683 9e8a757 772925a 9e8a757 574f683 9e8a757 772925a 9e8a757 772925a 9e8a757 772925a 9e8a757 772925a 9e8a757 772925a 9e8a757 772925a 9e8a757 772925a 9e8a757 772925a 9e8a757 772925a 9e8a757 4cd6538 e088d48 9e8a757 e088d48 9e8a757 e088d48 4cd6538 9e8a757 e088d48 9e8a757 e088d48 9e8a757 e088d48 9e8a757 e088d48 9e8a757 4cd6538 9e8a757 e088d48 9e8a757 e088d48 9e8a757 e088d48 9e8a757 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 |
import os
import re
import time
import random
import numpy as np
import math
import shutil
# import base64 # Not directly needed for Gradio filepath output
# Torch and Audio
import torch
import torch.nn as nn
# import torch.optim as optim # Not needed for inference
# from torch.utils.data import Dataset, DataLoader # Not needed for inference
import torch.nn.functional as F
import torchaudio
import librosa
# import librosa.display # Not used in pipeline
# Text and Audio Processing
from unidecode import unidecode
# from inflect import engine # Not explicitly used in pipeline, consider removing
# import pydub # Not explicitly used in pipeline, consider removing
import soundfile as sf
# Transformers
from transformers import (
WhisperProcessor, WhisperForConditionalGeneration,
MarianTokenizer, MarianMTModel,
)
from huggingface_hub import hf_hub_download
# Gradio and Hugging Face Spaces
import gradio as gr
import spaces # <<< --- ADD THIS IMPORT --- <<<
# --- Global Configuration & Device Setup ---
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
print(f"--- Initializing on device: {DEVICE} ---") # This will run when the Space builds/starts
# --- Part 1: TTS Model Components (Your Custom TTS) ---
# ... (Keep all your Hyperparams, text_to_seq, audio processing for TTS, and Model class definitions:
# EncoderBlock, DecoderBlock, EncoderPreNet, PostNet, DecoderPreNet, TransformerTTS)
# ... (Ensure TransformerTTS and its sub-modules are correctly defined as in your previous code)
# --- (Start of your model definitions - make sure this is complete from your previous code) ---
class Hyperparams:
seed = 42
# We won't use these dataset paths, but keep them for hp object integrity
csv_path = "path/to/metadata.csv"
wav_path = "path/to/wavs"
symbols = [
'EOS', ' ', '!', ',', '-', '.', ';', '?', 'a', 'b', 'c', 'd', 'e', 'f',
'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', 'o', 'p', 'q', 'r', 's',
't', 'u', 'v', 'w', 'x', 'y', 'z', 'à', 'â', 'è', 'é', 'ê', 'ü',
'’', '“', '”'
]
sr = 22050
n_fft = 2048
n_stft = int((n_fft//2) + 1)
hop_length = int(n_fft/8.0)
win_length = int(n_fft/2.0)
mel_freq = 128
max_mel_time = 1024
power = 2.0
text_num_embeddings = 2*len(symbols)
embedding_size = 256
encoder_embedding_size = 512
dim_feedforward = 1024
postnet_embedding_size = 1024
encoder_kernel_size = 3
postnet_kernel_size = 5
ampl_multiplier = 10.0
ampl_amin = 1e-10
db_multiplier = 1.0
ampl_ref = 1.0
ampl_power = 1.0
max_db = 100
scale_db = 10
hp = Hyperparams()
# Text to Sequence
symbol_to_id = {s: i for i, s in enumerate(hp.symbols)}
def text_to_seq(text):
text = text.lower()
seq = []
for s in text:
_id = symbol_to_id.get(s, None)
if _id is not None:
seq.append(_id)
seq.append(symbol_to_id["EOS"])
return torch.IntTensor(seq)
# Audio Processing
spec_transform = torchaudio.transforms.Spectrogram(n_fft=hp.n_fft, win_length=hp.win_length, hop_length=hp.hop_length, power=hp.power)
mel_scale_transform = torchaudio.transforms.MelScale(n_mels=hp.mel_freq, sample_rate=hp.sr, n_stft=hp.n_stft)
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
mel_inverse_transform = torchaudio.transforms.InverseMelScale(n_mels=hp.mel_freq, sample_rate=hp.sr, n_stft=hp.n_stft).to(DEVICE)
griffnlim_transform = torchaudio.transforms.GriffinLim(n_fft=hp.n_fft, win_length=hp.win_length, hop_length=hp.hop_length).to(DEVICE)
def pow_to_db_mel_spec(mel_spec):
mel_spec = torchaudio.functional.amplitude_to_DB(mel_spec, multiplier=hp.ampl_multiplier, amin=hp.ampl_amin, db_multiplier=hp.db_multiplier, top_db=hp.max_db)
mel_spec = mel_spec/hp.scale_db
return mel_spec
def db_to_power_mel_spec(mel_spec):
mel_spec = mel_spec*hp.scale_db
mel_spec = torchaudio.functional.DB_to_amplitude(mel_spec, ref=hp.ampl_ref, power=hp.ampl_power)
return mel_spec
def inverse_mel_spec_to_wav(mel_spec):
power_mel_spec = db_to_power_mel_spec(mel_spec.to(DEVICE))
spectrogram = mel_inverse_transform(power_mel_spec)
pseudo_wav = griffnlim_transform(spectrogram)
return pseudo_wav
def mask_from_seq_lengths(sequence_lengths: torch.Tensor, max_length: int) -> torch.BoolTensor:
ones = sequence_lengths.new_ones(sequence_lengths.size(0), max_length)
range_tensor = ones.cumsum(dim=1)
return sequence_lengths.unsqueeze(1) >= range_tensor
# --- TransformerTTS Model Architecture (Copied from notebook)
class EncoderBlock(nn.Module):
def __init__(self):
super(EncoderBlock, self).__init__()
self.norm_1 = nn.LayerNorm(normalized_shape=hp.embedding_size)
self.attn = torch.nn.MultiheadAttention(embed_dim=hp.embedding_size, num_heads=4, dropout=0.1, batch_first=True)
self.dropout_1 = torch.nn.Dropout(0.1)
self.norm_2 = nn.LayerNorm(normalized_shape=hp.embedding_size)
self.linear_1 = nn.Linear(hp.embedding_size, hp.dim_feedforward)
self.dropout_2 = torch.nn.Dropout(0.1)
self.linear_2 = nn.Linear(hp.dim_feedforward, hp.embedding_size)
self.dropout_3 = torch.nn.Dropout(0.1)
def forward(self, x, attn_mask=None, key_padding_mask=None):
x_out = self.norm_1(x)
x_out, _ = self.attn(query=x_out, key=x_out, value=x_out, attn_mask=attn_mask, key_padding_mask=key_padding_mask)
x_out = self.dropout_1(x_out)
x = x + x_out
x_out = self.norm_2(x)
x_out = self.linear_1(x_out)
x_out = F.relu(x_out)
x_out = self.dropout_2(x_out)
x_out = self.linear_2(x_out)
x_out = self.dropout_3(x_out)
x = x + x_out
return x
class DecoderBlock(nn.Module):
def __init__(self):
super(DecoderBlock, self).__init__()
self.norm_1 = nn.LayerNorm(normalized_shape=hp.embedding_size)
self.self_attn = torch.nn.MultiheadAttention(embed_dim=hp.embedding_size, num_heads=4, dropout=0.1, batch_first=True)
self.dropout_1 = torch.nn.Dropout(0.1)
self.norm_2 = nn.LayerNorm(normalized_shape=hp.embedding_size)
self.attn = torch.nn.MultiheadAttention(embed_dim=hp.embedding_size, num_heads=4, dropout=0.1, batch_first=True)
self.dropout_2 = torch.nn.Dropout(0.1)
self.norm_3 = nn.LayerNorm(normalized_shape=hp.embedding_size)
self.linear_1 = nn.Linear(hp.embedding_size, hp.dim_feedforward)
self.dropout_3 = torch.nn.Dropout(0.1)
self.linear_2 = nn.Linear(hp.dim_feedforward, hp.embedding_size)
self.dropout_4 = torch.nn.Dropout(0.1)
def forward(self, x, memory, x_attn_mask=None, x_key_padding_mask=None, memory_attn_mask=None, memory_key_padding_mask=None):
x_out, _ = self.self_attn(query=x, key=x, value=x, attn_mask=x_attn_mask, key_padding_mask=x_key_padding_mask)
x_out = self.dropout_1(x_out)
x = self.norm_1(x + x_out)
x_out, _ = self.attn(query=x, key=memory, value=memory, attn_mask=memory_attn_mask, key_padding_mask=memory_key_padding_mask)
x_out = self.dropout_2(x_out)
x = self.norm_2(x + x_out)
x_out = self.linear_1(x)
x_out = F.relu(x_out)
x_out = self.dropout_3(x_out)
x_out = self.linear_2(x_out)
x_out = self.dropout_4(x_out)
x = self.norm_3(x + x_out)
return x
class EncoderPreNet(nn.Module):
def __init__(self):
super(EncoderPreNet, self).__init__()
self.embedding = nn.Embedding(num_embeddings=hp.text_num_embeddings, embedding_dim=hp.encoder_embedding_size)
self.linear_1 = nn.Linear(hp.encoder_embedding_size, hp.encoder_embedding_size)
self.linear_2 = nn.Linear(hp.encoder_embedding_size, hp.embedding_size)
self.conv_1 = nn.Conv1d(hp.encoder_embedding_size, hp.encoder_embedding_size, kernel_size=hp.encoder_kernel_size, stride=1, padding=int((hp.encoder_kernel_size - 1) / 2), dilation=1)
self.bn_1 = nn.BatchNorm1d(hp.encoder_embedding_size)
self.dropout_1 = torch.nn.Dropout(0.5)
self.conv_2 = nn.Conv1d(hp.encoder_embedding_size, hp.encoder_embedding_size, kernel_size=hp.encoder_kernel_size, stride=1, padding=int((hp.encoder_kernel_size - 1) / 2), dilation=1)
self.bn_2 = nn.BatchNorm1d(hp.encoder_embedding_size)
self.dropout_2 = torch.nn.Dropout(0.5)
self.conv_3 = nn.Conv1d(hp.encoder_embedding_size, hp.encoder_embedding_size, kernel_size=hp.encoder_kernel_size, stride=1, padding=int((hp.encoder_kernel_size - 1) / 2), dilation=1)
self.bn_3 = nn.BatchNorm1d(hp.encoder_embedding_size)
self.dropout_3 = torch.nn.Dropout(0.5)
def forward(self, text):
x = self.embedding(text)
x = self.linear_1(x)
x = x.transpose(2, 1)
x = self.conv_1(x)
x = self.bn_1(x)
x = F.relu(x)
x = self.dropout_1(x)
x = self.conv_2(x)
x = self.bn_2(x)
x = F.relu(x)
x = self.dropout_2(x)
x = self.conv_3(x)
x = self.bn_3(x)
x = F.relu(x)
x = self.dropout_3(x)
x = x.transpose(1, 2)
x = self.linear_2(x)
return x
class PostNet(nn.Module):
def __init__(self):
super(PostNet, self).__init__()
self.conv_1 = nn.Conv1d(hp.mel_freq, hp.postnet_embedding_size, kernel_size=hp.postnet_kernel_size, stride=1, padding=int((hp.postnet_kernel_size - 1) / 2), dilation=1)
self.bn_1 = nn.BatchNorm1d(hp.postnet_embedding_size)
self.dropout_1 = torch.nn.Dropout(0.5)
self.conv_2 = nn.Conv1d(hp.postnet_embedding_size, hp.postnet_embedding_size, kernel_size=hp.postnet_kernel_size, stride=1, padding=int((hp.postnet_kernel_size - 1) / 2), dilation=1)
self.bn_2 = nn.BatchNorm1d(hp.postnet_embedding_size)
self.dropout_2 = torch.nn.Dropout(0.5)
self.conv_3 = nn.Conv1d(hp.postnet_embedding_size, hp.postnet_embedding_size, kernel_size=hp.postnet_kernel_size, stride=1, padding=int((hp.postnet_kernel_size - 1) / 2), dilation=1)
self.bn_3 = nn.BatchNorm1d(hp.postnet_embedding_size)
self.dropout_3 = torch.nn.Dropout(0.5)
self.conv_4 = nn.Conv1d(hp.postnet_embedding_size, hp.postnet_embedding_size, kernel_size=hp.postnet_kernel_size, stride=1, padding=int((hp.postnet_kernel_size - 1) / 2), dilation=1)
self.bn_4 = nn.BatchNorm1d(hp.postnet_embedding_size)
self.dropout_4 = torch.nn.Dropout(0.5)
self.conv_5 = nn.Conv1d(hp.postnet_embedding_size, hp.postnet_embedding_size, kernel_size=hp.postnet_kernel_size, stride=1, padding=int((hp.postnet_kernel_size - 1) / 2), dilation=1)
self.bn_5 = nn.BatchNorm1d(hp.postnet_embedding_size)
self.dropout_5 = torch.nn.Dropout(0.5)
self.conv_6 = nn.Conv1d(hp.postnet_embedding_size, hp.mel_freq, kernel_size=hp.postnet_kernel_size, stride=1, padding=int((hp.postnet_kernel_size - 1) / 2), dilation=1)
self.bn_6 = nn.BatchNorm1d(hp.mel_freq)
self.dropout_6 = torch.nn.Dropout(0.5)
def forward(self, x):
x = x.transpose(2, 1)
x = self.conv_1(x)
x = self.bn_1(x); x = torch.tanh(x); x = self.dropout_1(x)
x = self.conv_2(x)
x = self.bn_2(x); x = torch.tanh(x); x = self.dropout_2(x)
x = self.conv_3(x)
x = self.bn_3(x); x = torch.tanh(x); x = self.dropout_3(x)
x = self.conv_4(x)
x = self.bn_4(x); x = torch.tanh(x); x = self.dropout_4(x)
x = self.conv_5(x)
x = self.bn_5(x); x = torch.tanh(x); x = self.dropout_5(x)
x = self.conv_6(x)
x = self.bn_6(x); x = self.dropout_6(x)
x = x.transpose(1, 2)
return x
class DecoderPreNet(nn.Module):
def __init__(self):
super(DecoderPreNet, self).__init__()
self.linear_1 = nn.Linear(hp.mel_freq, hp.embedding_size)
self.linear_2 = nn.Linear(hp.embedding_size, hp.embedding_size)
def forward(self, x):
x = self.linear_1(x)
x = F.relu(x)
x = F.dropout(x, p=0.5, training=True)
x = self.linear_2(x)
x = F.relu(x)
x = F.dropout(x, p=0.5, training=True)
return x
class TransformerTTS(nn.Module):
def __init__(self, device=DEVICE):
super(TransformerTTS, self).__init__()
self.encoder_prenet = EncoderPreNet()
self.decoder_prenet = DecoderPreNet()
self.postnet = PostNet()
self.pos_encoding = nn.Embedding(num_embeddings=hp.max_mel_time, embedding_dim=hp.embedding_size)
self.encoder_block_1 = EncoderBlock()
self.encoder_block_2 = EncoderBlock()
self.encoder_block_3 = EncoderBlock()
self.decoder_block_1 = DecoderBlock()
self.decoder_block_2 = DecoderBlock()
self.decoder_block_3 = DecoderBlock()
self.linear_1 = nn.Linear(hp.embedding_size, hp.mel_freq)
self.linear_2 = nn.Linear(hp.embedding_size, 1)
self.norm_memory = nn.LayerNorm(normalized_shape=hp.embedding_size)
def forward(self, text, text_len, mel, mel_len):
N = text.shape[0]; S = text.shape[1]; TIME = mel.shape[1]
self.src_key_padding_mask = torch.zeros((N, S), device=text.device).masked_fill(~mask_from_seq_lengths(text_len, max_length=S), float("-inf"))
self.src_mask = torch.zeros((S, S), device=text.device).masked_fill(torch.triu(torch.full((S, S), True, dtype=torch.bool), diagonal=1).to(text.device), float("-inf"))
self.tgt_key_padding_mask = torch.zeros((N, TIME), device=mel.device).masked_fill(~mask_from_seq_lengths(mel_len, max_length=TIME), float("-inf"))
self.tgt_mask = torch.zeros((TIME, TIME), device=mel.device).masked_fill(torch.triu(torch.full((TIME, TIME), True, device=mel.device, dtype=torch.bool), diagonal=1), float("-inf"))
self.memory_mask = torch.zeros((TIME, S), device=mel.device).masked_fill(torch.triu(torch.full((TIME, S), True, device=mel.device, dtype=torch.bool), diagonal=1), float("-inf"))
text_x = self.encoder_prenet(text)
pos_codes = self.pos_encoding(torch.arange(hp.max_mel_time).to(mel.device))
S = text_x.shape[1]; text_x = text_x + pos_codes[:S]
text_x = self.encoder_block_1(text_x, attn_mask = self.src_mask, key_padding_mask = self.src_key_padding_mask)
text_x = self.encoder_block_2(text_x, attn_mask = self.src_mask, key_padding_mask = self.src_key_padding_mask)
text_x = self.encoder_block_3(text_x, attn_mask = self.src_mask, key_padding_mask = self.src_key_padding_mask)
text_x = self.norm_memory(text_x)
mel_x = self.decoder_prenet(mel); mel_x = mel_x + pos_codes[:TIME]
mel_x = self.decoder_block_1(x=mel_x, memory=text_x, x_attn_mask=self.tgt_mask, x_key_padding_mask=self.tgt_key_padding_mask, memory_attn_mask=self.memory_mask, memory_key_padding_mask=self.src_key_padding_mask)
mel_x = self.decoder_block_2(x=mel_x, memory=text_x, x_attn_mask=self.tgt_mask, x_key_padding_mask=self.tgt_key_padding_mask, memory_attn_mask=self.memory_mask, memory_key_padding_mask=self.src_key_padding_mask)
mel_x = self.decoder_block_3(x=mel_x, memory=text_x, x_attn_mask=self.tgt_mask, x_key_padding_mask=self.tgt_key_padding_mask, memory_attn_mask=self.memory_mask, memory_key_padding_mask=self.src_key_padding_mask)
mel_linear = self.linear_1(mel_x)
mel_postnet = self.postnet(mel_linear)
mel_postnet = mel_linear + mel_postnet
stop_token = self.linear_2(mel_x)
bool_mel_mask = self.tgt_key_padding_mask.ne(0).unsqueeze(-1).repeat(1, 1, hp.mel_freq)
mel_linear = mel_linear.masked_fill(bool_mel_mask, 0)
mel_postnet = mel_postnet.masked_fill(bool_mel_mask, 0)
stop_token = stop_token.masked_fill(bool_mel_mask[:, :, 0].unsqueeze(-1), 1e3).squeeze(2)
return mel_postnet, mel_linear, stop_token
@torch.no_grad()
def inference(self, text, max_length=800, stop_token_threshold=0.5, with_tqdm=True):
self.eval(); self.train(False)
text_lengths = torch.tensor(text.shape[1]).unsqueeze(0).to(DEVICE)
N = 1
SOS = torch.zeros((N, 1, hp.mel_freq), device=DEVICE)
mel_padded = SOS
mel_lengths = torch.tensor(1).unsqueeze(0).to(DEVICE)
stop_token_outputs = torch.FloatTensor([]).to(text.device)
iters = range(max_length)
for _ in iters:
mel_postnet, mel_linear, stop_token = self(text, text_lengths, mel_padded, mel_lengths)
mel_padded = torch.cat([mel_padded, mel_postnet[:, -1:, :]], dim=1)
if torch.sigmoid(stop_token[:, -1]) > stop_token_threshold:
break
else:
stop_token_outputs = torch.cat([stop_token_outputs, stop_token[:, -1:]], dim=1)
mel_lengths = torch.tensor(mel_padded.shape[1]).unsqueeze(0).to(DEVICE)
return mel_postnet, stop_token_outputs
# --- (End of your model definitions) ---
# --- Part 2: Model Loading ---
# (Same as before - ensure TTS_MODEL = TransformerTTS(device=DEVICE).to(DEVICE) is used)
TTS_MODEL_HUB_ID = "MoHamdyy/transformer-tts-ljspeech"
ASR_HUB_ID = "MoHamdyy/whisper-stt-model"
MARIAN_HUB_ID = "MoHamdyy/marian-ar-en-translation"
# Wrap model loading in a function to clearly see when it happens or to potentially delay it.
# For Spaces, global loading is fine and preferred as it happens once.
print("--- Starting Model Loading ---")
try:
print("Loading TTS model...")
# Download the .pt file from its repo
tts_model_path = hf_hub_download(repo_id=TTS_MODEL_HUB_ID, filename="train_SimpleTransfromerTTS.pt")
state = torch.load(tts_model_path, map_location=DEVICE)
TTS_MODEL = TransformerTTS().to(DEVICE)
# Check for the correct key in the state dictionary
if "model" in state:
TTS_MODEL.load_state_dict(state["model"])
elif "state_dict" in state:
TTS_MODEL.load_state_dict(state["state_dict"])
else:
TTS_MODEL.load_state_dict(state) # Assume the whole file is the state_dict
TTS_MODEL.eval()
print("TTS model loaded successfully.")
except Exception as e:
print(f"Error loading TTS model: {e}")
TTS_MODEL = None
# Load STT (Whisper) Model from Hub
try:
print("Loading STT (Whisper) model...")
stt_processor = WhisperProcessor.from_pretrained(ASR_HUB_ID)
stt_model = WhisperForConditionalGeneration.from_pretrained(ASR_HUB_ID).to(DEVICE).eval()
print("STT model loaded successfully.")
except Exception as e:
print(f"Error loading STT model: {e}")
stt_processor = None
stt_model = None
# Load TTT (MarianMT) Model from Hub
try:
print("Loading TTT (MarianMT) model...")
mt_tokenizer = MarianTokenizer.from_pretrained(MARIAN_HUB_ID)
mt_model = MarianMTModel.from_pretrained(MARIAN_HUB_ID).to(DEVICE).eval()
print("TTT model loaded successfully.")
except Exception as e:
print(f"Error loading TTT model: {e}")
mt_tokenizer = None
mt_model = None
print("--- Model Loading Complete ---")
# --- Part 3: Full Pipeline Function for Gradio ---
@spaces.GPU # For ZeroGPU execution context
def full_speech_translation_pipeline(audio_input_path: str):
print(f"--- PIPELINE START: Processing {audio_input_path} ---")
if audio_input_path is None or not os.path.exists(audio_input_path):
msg = "Error: Audio file not provided or not found."
print(msg)
# Return empty/default values
return "Error: No file", "", (hp.sr, np.array([]).astype(np.float32))
# STT Stage
arabic_transcript = "STT Error: Processing failed."
try:
print("STT: Loading and resampling audio...")
wav, sr = torchaudio.load(audio_input_path)
if wav.size(0) > 1: wav = wav.mean(dim=0, keepdim=True)
target_sr_stt = stt_processor.feature_extractor.sampling_rate
if sr != target_sr_stt: wav = torchaudio.transforms.Resample(sr, target_sr_stt)(wav)
audio_array_stt = wav.squeeze().cpu().numpy()
print("STT: Extracting features and transcribing...")
inputs = stt_processor(audio_array_stt, sampling_rate=target_sr_stt, return_tensors="pt").input_features.to(DEVICE)
forced_ids = stt_processor.get_decoder_prompt_ids(language="arabic", task="transcribe")
with torch.no_grad():
generated_ids = stt_model.generate(inputs, forced_decoder_ids=forced_ids, max_length=448)
arabic_transcript = stt_processor.decode(generated_ids[0], skip_special_tokens=True).strip()
print(f"STT Output: {arabic_transcript}")
except Exception as e:
print(f"STT Error: {e}")
# TTT Stage
english_translation = "TTT Error: Processing failed."
if arabic_transcript and not arabic_transcript.startswith("STT Error"):
try:
print("TTT: Translating to English...")
batch = mt_tokenizer(arabic_transcript, return_tensors="pt", padding=True).to(DEVICE)
with torch.no_grad():
translated_ids = mt_model.generate(**batch, max_length=512)
english_translation = mt_tokenizer.batch_decode(translated_ids, skip_special_tokens=True)[0].strip()
print(f"TTT Output: {english_translation}")
except Exception as e:
print(f"TTT Error: {e}")
else:
english_translation = "(Skipped TTT due to STT failure)"
print(english_translation)
# TTS Stage
synthesized_audio_np = np.array([]).astype(np.float32)
if english_translation and not english_translation.startswith("TTT Error"):
try:
print("TTS: Synthesizing English speech...")
sequence = text_to_seq(english_translation).unsqueeze(0).to(DEVICE)
generated_mel, _ = TTS_MODEL.inference(sequence, max_length=hp.max_mel_time-20, stop_token_threshold=0.5, with_tqdm=False)
print(f"TTS: Generated mel shape: {generated_mel.shape if generated_mel is not None else 'None'}")
if generated_mel is not None and generated_mel.numel() > 0:
mel_for_vocoder = generated_mel.detach().squeeze(0).transpose(0, 1)
audio_tensor = inverse_mel_spec_to_wav(mel_for_vocoder)
synthesized_audio_np = audio_tensor.cpu().numpy()
print(f"TTS: Synthesized audio shape: {synthesized_audio_np.shape}")
except Exception as e:
print(f"TTS Error: {e}")
print(f"--- PIPELINE END ---")
return arabic_transcript, english_translation, (hp.sr, synthesized_audio_np)
# --- Part 4: Gradio Interface Definition ---
# (Same as before)
iface = gr.Interface(
fn=full_speech_translation_pipeline,
inputs=[
gr.Audio(type="filepath", label="Upload Arabic Speech")
],
outputs=[
gr.Textbox(label="Arabic Transcript (STT)"),
gr.Textbox(label="English Translation (TTT)"),
gr.Audio(label="Synthesized English Speech (TTS)", type="filepath")
],
title="Arabic to English Speech Translation (ZeroGPU)",
description="Upload an Arabic audio file. Transcribed to Arabic (Whisper), translated to English (MarianMT), synthesized to English speech (Custom TransformerTTS).",
allow_flagging="never",
# examples=[["sample.wav"]] # If you add a sample.wav to your repo
)
# --- Part 5: Launch for Spaces (and local testing) ---
if __name__ == '__main__':
# Clean up temp audio files from previous local runs
for f_name in os.listdir("."):
if f_name.startswith("output_audio_") and f_name.endswith(".wav"):
try:
os.remove(f_name)
except OSError:
pass # Ignore if file is already gone or locked
print("Starting Gradio interface locally with debug mode...")
iface.launch(debug=True, share=False) # share=False for local, Spaces handles public URL |