File size: 1,564 Bytes
88dc3ba
5d9c950
b2593bc
5d9c950
527e644
b2593bc
f47a9e0
78cc121
b2593bc
 
f47a9e0
 
b2593bc
 
038e82c
7d6796c
52fc07d
 
 
 
 
 
 
 
 
 
78cc121
52fc07d
 
 
038e82c
52fc07d
 
 
038e82c
52fc07d
038e82c
52fc07d
 
527e644
b2593bc
038e82c
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
import subprocess
subprocess.run(["pip", "install", "gradio", "--upgrade"])
subprocess.run(["pip", "install", "transformers"])
subprocess.run(["pip", "install", "torchaudio", "--upgrade"])

import gradio as gr
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
import torchaudio

# Load model and processor
processor = Wav2Vec2Processor.from_pretrained("jonatasgrosman/wav2vec2-large-xlsr-53-italian")
model = Wav2Vec2ForCTC.from_pretrained("jonatasgrosman/wav2vec2-large-xlsr-53-italian")

# Function to perform ASR on audio data
def transcribe_audio(audio_data):
    print("Received audio data:", audio_data)  # Debug print
    if audio_data is None:
        return "No audio data received."

    try:
        # Convert audio data to mono and normalize
        audio_data = torchaudio.transforms.Resample(audio_data[1], 16000)(audio_data[0])
        audio_data = torchaudio.functional.gain(audio_data, gain_db=5.0)

        # Apply custom preprocessing to the audio data if needed
        input_values = processor(audio_data[0].numpy(), return_tensors="pt").input_values

        # Perform ASR
        with torch.no_grad():
            logits = model(input_values).logits

        # Decode the output
        predicted_ids = torch.argmax(logits, dim=-1)
        transcription = processor.batch_decode(predicted_ids)

        return transcription[0]

    except Exception as e:
        return f"An error occurred: {str(e)}"

# Create Gradio interface
audio_input = gr.Audio()
gr.Interface(fn=transcribe_audio, inputs=audio_input, outputs="text").launch()