File size: 9,792 Bytes
9b13ff2
22a5a1b
c0897d7
4126bd5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c0897d7
6fd750b
 
722c417
 
 
 
 
6fd750b
722c417
 
 
 
 
 
 
28e5266
4126bd5
 
 
ff6f573
22a5a1b
4126bd5
c0897d7
4126bd5
 
 
 
 
 
 
 
 
9b13ff2
4126bd5
 
6fd750b
 
 
 
 
 
 
 
 
 
 
 
 
4126bd5
6fd750b
4126bd5
e13f103
4126bd5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5dca394
6fd750b
 
 
e13f103
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0f792c7
6fd750b
8985573
4126bd5
 
 
 
8985573
 
22a5a1b
4126bd5
 
 
516d598
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
import streamlit as st
import difflib
import requests
import datetime

# --- CONFIG ---
GROQ_API_KEY = st.secrets.get('GROQ_API_KEY', 'YOUR_GROQ_API_KEY')
BLACKBOX_API_KEY = st.secrets.get('BLACKBOX_API_KEY', 'YOUR_BLACKBOX_API_KEY')

PROGRAMMING_LANGUAGES = ["Python", "JavaScript", "TypeScript", "Java", "C++", "C#"]
SKILL_LEVELS = ["Beginner", "Intermediate", "Expert"]
USER_ROLES = ["Student", "Frontend Developer", "Backend Developer", "Data Scientist"]
EXPLANATION_LANGUAGES = ["English", "Spanish", "Chinese", "Urdu"]
EXAMPLE_QUESTIONS = [
    "What does this function do?",
    "How can I optimize this code?",
    "What are the potential bugs in this code?",
    "How does this algorithm work?",
    "What design patterns are used here?",
    "How can I make this code more readable?"
]

def call_groq_api(prompt, model="llama3-70b-8192"):
    headers = {"Authorization": f"Bearer {GROQ_API_KEY}", "Content-Type": "application/json"}
    data = {"model": model, "messages": [{"role": "user", "content": prompt}]}
    response = requests.post("https://api.groq.com/openai/v1/chat/completions", json=data, headers=headers)
    if response.status_code == 200:
        return response.json()['choices'][0]['message']['content']
    else:
        return f"[Groq API Error] {response.text}"

def call_blackbox_agent(messages):
    url = "https://api.code.blackbox.ai/v1/chat/completions"
    headers = {
        "Content-Type": "application/json",
        "Authorization": f"Bearer {BLACKBOX_API_KEY}"
    }
    data = {
        "model": "code-chat",
        "messages": messages
    }
    response = requests.post(url, headers=headers, json=data)
    if response.status_code == 200:
        return response.json()["choices"][0]["message"]["content"]
    else:
        return call_groq_api(messages[-1]["content"])

def code_matches_language(code, language):
    if language.lower() in code.lower():
        return True
    return True

def calculate_code_complexity(code):
    lines = code.count('\n') + 1
    return f"{lines} lines"

def get_inline_diff(original, modified):
    diff = difflib.unified_diff(
        original.splitlines(),
        modified.splitlines(),
        lineterm='',
        fromfile='Original',
        tofile='Refactored'
    )
    return '\n'.join(diff)

def is_coding_question(question):
    messages = [
        {"role": "system", "content": "You are a helpful coding assistant."},
        {"role": "user", "content": f"Is the following question about programming or code? Answer only 'yes' or 'no'. Question: {question}"}
    ]
    try:
        response = call_blackbox_agent(messages)
        return 'yes' in response.lower()
    except Exception:
        return False

st.set_page_config(page_title="AI Workflow App", layout="wide")
st.title("AI Assistant with Workflow (Streamlit Edition)")

page = st.sidebar.radio("Navigate", ["Home", "AI Workflow", "Semantic Search"])

if page == "Semantic Search":
    st.header("Semantic Search")
    code_input = st.text_area("Paste your code here", height=200, key="sem_code")
    uploaded_file = st.file_uploader("Or upload a code file", type=["py", "js", "ts", "java", "cpp", "cs"], key="sem_file")
    if uploaded_file:
        code_input = uploaded_file.read().decode("utf-8")
        st.text_area("File content", code_input, height=200, key="sem_file_content")
    col1, col2, col3, col4 = st.columns(4)
    with col1:
        programming_language = st.selectbox("Programming Language", PROGRAMMING_LANGUAGES, key="sem_lang")
    with col2:
        skill_level = st.selectbox("Skill Level", SKILL_LEVELS, key="sem_skill")
    with col3:
        user_role = st.selectbox("Your Role", USER_ROLES, key="sem_role")
    with col4:
        explanation_language = st.selectbox("Explanation Language", EXPLANATION_LANGUAGES, key="sem_expl")

    st.caption("Example questions:")
    st.write(", ".join(EXAMPLE_QUESTIONS))

    # --- Voice input button (for local use only) ---
    st.markdown("""
    <button id="voice-btn" style="font-size:22px; margin-bottom:8px;">🎤 Speak your question</button>
    <span id="voice-status" style="margin-left:8px;"></span>
    <script>
    const btn = document.getElementById('voice-btn');
    const status = document.getElementById('voice-status');
    let recognition;
    if ('webkitSpeechRecognition' in window) {
        recognition = new webkitSpeechRecognition();
        recognition.lang = 'en-US';
        recognition.continuous = false;
        recognition.interimResults = false;
        btn.onclick = function() {
            recognition.start();
            status.textContent = 'Listening...';
        };
        recognition.onresult = function(event) {
            const transcript = event.results[0][0].transcript;
            // Find the Streamlit input and set its value
            const streamlitInput = window.parent.document.querySelector('input[data-testid="stTextInput"]');
            if (streamlitInput) {
                streamlitInput.value = transcript;
                streamlitInput.dispatchEvent(new Event('input', { bubbles: true }));
            }
            status.textContent = 'Heard: ' + transcript;
        };
        recognition.onerror = function() {
            status.textContent = 'Voice error';
        };
        recognition.onend = function() {
            if (status.textContent === 'Listening...') status.textContent = '';
        };
    } else {
        btn.disabled = true;
        status.textContent = 'Voice not supported';
    }
    </script>
    """, unsafe_allow_html=True)

    # --- Single input field for question ---
    question = st.text_input("Ask a question about your code", key="sem_question")

    if st.button("Run Semantic Search"):
        if not code_input.strip() or not question.strip():
            st.error("Both code and question are required.")
        elif not code_matches_language(code_input, programming_language):
            st.error(f"Language mismatch. Please check your code and language selection.")
        elif not is_coding_question(question):
            st.warning("Please ask a relevant question.")
        else:
            with st.spinner("Running Semantic Search..."):
                answer = call_groq_api(f"{question}\n\nCode:\n{code_input}")
                st.success("Answer:")
                st.write(answer)

elif page == "AI Workflow":
    st.header("Full AI Workflow")
    code_input = st.text_area("Paste your code here", height=200)
    uploaded_file = st.file_uploader("Or upload a code file", type=["py", "js", "ts", "java", "cpp", "cs"])
    if uploaded_file:
        code_input = uploaded_file.read().decode("utf-8")
        st.text_area("File content", code_input, height=200, key="file_content")
    col1, col2, col3, col4 = st.columns(4)
    with col1:
        programming_language = st.selectbox("Programming Language", PROGRAMMING_LANGUAGES)
    with col2:
        skill_level = st.selectbox("Skill Level", SKILL_LEVELS)
    with col3:
        user_role = st.selectbox("Your Role", USER_ROLES)
    with col4:
        explanation_language = st.selectbox("Explanation Language", EXPLANATION_LANGUAGES)
    if code_input:
        st.caption(f"Complexity: {calculate_code_complexity(code_input)}")
    if st.button("Run Workflow", type="primary"):
        if not code_input.strip():
            st.error("Please paste or upload your code.")
        elif not code_matches_language(code_input, programming_language):
            st.error(f"Language mismatch. Please check your code and language selection.")
        else:
            with st.spinner("Running AI Workflow..."):
                steps = [
                    ("Explain", call_groq_api(f"Explain this {programming_language} code for a {skill_level} {user_role} in {explanation_language}:\n{code_input}")),
                    ("Refactor", call_blackbox_agent([
                        {"role": "system", "content": "You are a helpful coding assistant."},
                        {"role": "user", "content": f"Refactor this {programming_language} code: {code_input}"}
                    ])),
                    ("Review", call_groq_api(f"Review this {programming_language} code for errors and improvements: {code_input}")),
                    ("ErrorDetection", call_groq_api(f"Find bugs in this {programming_language} code: {code_input}")),
                    ("TestGeneration", call_groq_api(f"Generate tests for this {programming_language} code: {code_input}")),
                ]
                timeline = []
                for step, output in steps:
                    timeline.append({"step": step, "output": output})
                st.success("Workflow complete!")
                for t in timeline:
                    st.subheader(t["step"])
                    st.write(t["output"])
                st.subheader("Code Diff (Original vs Refactored)")
                refactored_code = steps[1][1]
                st.code(get_inline_diff(code_input, refactored_code), language=programming_language.lower())
                report = f"AI Workflow Report\nGenerated on: {datetime.datetime.now()}\nLanguage: {programming_language}\nSkill Level: {skill_level}\nRole: {user_role}\n\n"
                for t in timeline:
                    report += f"## {t['step']}\n{t['output']}\n\n---\n\n"
                st.download_button("Download Report", report, file_name="ai_workflow_report.txt")

if page == "Home":
    st.header("Welcome to the AI Assistant!")
    st.markdown("""
    - **Full AI Workflow:** Complete code analysis pipeline with explanation, refactoring, review, and testing (powered by Groq/Blackbox)
    - **Semantic Search:** Ask natural language questions about your code and get intelligent answers
    """)
    st.info("Select a feature from the sidebar to get started.")