Spaces:
Sleeping
Sleeping
File size: 11,528 Bytes
9b13ff2 22a5a1b c0897d7 4126bd5 6fd750b 4126bd5 6fd750b 4126bd5 6fd750b 4126bd5 6fd750b 4126bd5 c0897d7 6fd750b 722c417 6fd750b 722c417 6fd750b 722c417 28e5266 4126bd5 6fd750b 4126bd5 6fd750b 22a5a1b 4126bd5 6fd750b c0897d7 4126bd5 9b13ff2 4126bd5 6fd750b 4126bd5 6fd750b 4126bd5 6fd750b 4126bd5 6fd750b 4126bd5 6fd750b 4126bd5 6fd750b 4126bd5 22a5a1b 4126bd5 22a5a1b 4126bd5 22a5a1b 4126bd5 6fd750b 4126bd5 23910c3 6fd750b 4126bd5 6fd750b 4126bd5 5dca394 6fd750b 4126bd5 22a5a1b 4126bd5 6fd750b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 |
import streamlit as st
import difflib
import requests
import datetime
import streamlit.components.v1 as components
# --- CONFIG ---
# Place your API keys here
GROQ_API_KEY = st.secrets.get('GROQ_API_KEY', 'YOUR_GROQ_API_KEY')
BLACKBOX_API_KEY = st.secrets.get('BLACKBOX_API_KEY', 'YOUR_BLACKBOX_API_KEY')
PROGRAMMING_LANGUAGES = ["Python", "JavaScript", "TypeScript", "Java", "C++", "C#"]
SKILL_LEVELS = ["Beginner", "Intermediate", "Expert"]
USER_ROLES = ["Student", "Frontend Developer", "Backend Developer", "Data Scientist"]
EXPLANATION_LANGUAGES = ["English", "Spanish", "Chinese", "Urdu"]
EXAMPLE_QUESTIONS = [
"What does this function do?",
"How can I optimize this code?",
"What are the potential bugs in this code?",
"How does this algorithm work?",
"What design patterns are used here?",
"How can I make this code more readable?"
]
# --- API STUBS ---
def call_groq_api(prompt, model="llama3-70b-8192"):
# Replace with actual Groq API call
headers = {"Authorization": f"Bearer {GROQ_API_KEY}", "Content-Type": "application/json"}
data = {"model": model, "messages": [{"role": "user", "content": prompt}]}
response = requests.post("https://api.groq.com/openai/v1/chat/completions", json=data, headers=headers)
if response.status_code == 200:
return response.json()['choices'][0]['message']['content']
else:
return f"[Groq API Error] {response.text}"
def call_blackbox_agent(messages):
url = "https://api.code.blackbox.ai/v1/chat/completions"
headers = {
"Content-Type": "application/json",
"Authorization": f"Bearer {BLACKBOX_API_KEY}"
}
data = {
"model": "code-chat",
"messages": messages
}
response = requests.post(url, headers=headers, json=data)
if response.status_code == 200:
return response.json()["choices"][0]["message"]["content"]
else:
# fallback to Groq if Blackbox fails
return call_groq_api(messages[-1]["content"])
# --- UTILS ---
def code_matches_language(code, language):
# Simple heuristic, can be improved
if language.lower() in code.lower():
return True
return True # For demo, always True
def calculate_code_complexity(code):
# Dummy complexity metric
lines = code.count('\n') + 1
return f"{lines} lines"
def get_inline_diff(original, modified):
diff = difflib.unified_diff(
original.splitlines(),
modified.splitlines(),
lineterm='',
fromfile='Original',
tofile='Refactored'
)
return '\n'.join(diff)
def is_coding_question(question):
"""
Uses Blackbox AI agent to check if the question is about programming/code.
Returns True if yes, False otherwise.
"""
messages = [
{"role": "system", "content": "You are a helpful coding assistant."},
{"role": "user", "content": f"Is the following question about programming or code? Answer only 'yes' or 'no'. Question: {question}"}
]
try:
response = call_blackbox_agent(messages)
return 'yes' in response.lower()
except Exception:
return False
# --- STREAMLIT APP ---
st.set_page_config(page_title="AI Workflow App", layout="wide")
st.title("AI Assistant with Workflow (Streamlit Edition)")
# Navigation
page = st.sidebar.radio("Navigate", ["Home", "AI Workflow", "Semantic Search"])
if page == "Home":
st.header("Welcome to the AI Assistant!")
st.markdown("""
- **Full AI Workflow:** Complete code analysis pipeline with explanation, refactoring, review, and testing (powered by Groq/Blackbox)
- **Semantic Search:** Ask natural language questions about your code and get intelligent answers
""")
st.info("Select a feature from the sidebar to get started.")
elif page == "AI Workflow":
st.header("Full AI Workflow")
code_input = st.text_area("Paste your code here", height=200)
uploaded_file = st.file_uploader("Or upload a code file", type=["py", "js", "ts", "java", "cpp", "cs"])
if uploaded_file:
code_input = uploaded_file.read().decode("utf-8")
st.text_area("File content", code_input, height=200, key="file_content")
col1, col2, col3, col4 = st.columns(4)
with col1:
programming_language = st.selectbox("Programming Language", PROGRAMMING_LANGUAGES)
with col2:
skill_level = st.selectbox("Skill Level", SKILL_LEVELS)
with col3:
user_role = st.selectbox("Your Role", USER_ROLES)
with col4:
explanation_language = st.selectbox("Explanation Language", EXPLANATION_LANGUAGES)
if code_input:
st.caption(f"Complexity: {calculate_code_complexity(code_input)}")
if st.button("Run Workflow", type="primary"):
if not code_input.strip():
st.error("Please paste or upload your code.")
elif not code_matches_language(code_input, programming_language):
st.error(f"Language mismatch. Please check your code and language selection.")
else:
with st.spinner("Running AI Workflow..."):
# Simulate workflow steps
steps = [
("Explain", call_groq_api(f"Explain this {programming_language} code for a {skill_level} {user_role} in {explanation_language}:\n{code_input}")),
("Refactor", call_blackbox_agent([
{"role": "system", "content": "You are a helpful coding assistant."},
{"role": "user", "content": f"Refactor this {programming_language} code: {code_input}"}
])),
("Review", call_groq_api(f"Review this {programming_language} code for errors and improvements: {code_input}")),
("ErrorDetection", call_groq_api(f"Find bugs in this {programming_language} code: {code_input}")),
("TestGeneration", call_groq_api(f"Generate tests for this {programming_language} code: {code_input}")),
]
timeline = []
for step, output in steps:
timeline.append({"step": step, "output": output})
st.success("Workflow complete!")
for t in timeline:
st.subheader(t["step"])
st.write(t["output"])
# Show code diff (Original vs Refactored)
st.subheader("Code Diff (Original vs Refactored)")
refactored_code = steps[1][1] # Blackbox agent output
st.code(get_inline_diff(code_input, refactored_code), language=programming_language.lower())
# Download report
report = f"AI Workflow Report\nGenerated on: {datetime.datetime.now()}\nLanguage: {programming_language}\nSkill Level: {skill_level}\nRole: {user_role}\n\n"
for t in timeline:
report += f"## {t['step']}\n{t['output']}\n\n---\n\n"
st.download_button("Download Report", report, file_name="ai_workflow_report.txt")
elif page == "Semantic Search":
st.header("Semantic Search")
code_input = st.text_area("Paste your code here", height=200, key="sem_code")
uploaded_file = st.file_uploader("Or upload a code file", type=["py", "js", "ts", "java", "cpp", "cs"], key="sem_file")
if uploaded_file:
code_input = uploaded_file.read().decode("utf-8")
st.text_area("File content", code_input, height=200, key="sem_file_content")
col1, col2, col3, col4 = st.columns(4)
with col1:
programming_language = st.selectbox("Programming Language", PROGRAMMING_LANGUAGES, key="sem_lang")
with col2:
skill_level = st.selectbox("Skill Level", SKILL_LEVELS, key="sem_skill")
with col3:
user_role = st.selectbox("Your Role", USER_ROLES, key="sem_role")
with col4:
explanation_language = st.selectbox("Explanation Language", EXPLANATION_LANGUAGES, key="sem_expl")
st.caption("Example questions:")
st.write(", ".join(EXAMPLE_QUESTIONS))
# Session state for question and trigger
if 'voice_question' not in st.session_state:
st.session_state['voice_question'] = ''
if 'run_semantic_search' not in st.session_state:
st.session_state['run_semantic_search'] = False
# Voice input widget (Web Speech API)
components.html('''
<button id="voice-btn" style="margin-bottom:8px;">🎤 Speak your question</button>
<span id="voice-status" style="margin-left:8px;"></span>
<script>
const btn = document.getElementById('voice-btn');
const status = document.getElementById('voice-status');
let recognition;
if ('webkitSpeechRecognition' in window) {
recognition = new webkitSpeechRecognition();
recognition.lang = 'en-US';
recognition.continuous = false;
recognition.interimResults = false;
btn.onclick = function() {
recognition.start();
status.textContent = 'Listening...';
};
recognition.onresult = function(event) {
const transcript = event.results[0][0].transcript;
window.parent.postMessage({isStreamlitMessage: true, type: 'streamlit:setComponentValue', value: transcript}, '*');
status.textContent = 'Heard: ' + transcript;
};
recognition.onerror = function() {
status.textContent = 'Voice error';
};
recognition.onend = function() {
if (status.textContent === 'Listening...') status.textContent = '';
};
} else {
btn.disabled = true;
status.textContent = 'Voice not supported';
}
</script>
''', height=60)
# --- Main question input ---
question = st.text_input("Ask a question about your code", value=st.session_state.get('voice_question', ''), key="sem_question")
# If voice input is received, validate and set question
# NOTE: Streamlit's JS->Python communication for custom components is limited.
# For a production app, use a robust Streamlit component for voice input.
# Here, we simulate the process using session_state for demonstration.
# You may need to use streamlit_js_eval or a similar package for real-time JS->Python value passing.
# Simulate voice input: check if the question was updated by voice
if st.session_state.get('voice_question', '') and not st.session_state.get('run_semantic_search', False):
voice_input = st.session_state['voice_question']
if is_coding_question(voice_input):
st.session_state['run_semantic_search'] = True
st.success(f"Question recognized: {voice_input}")
else:
st.warning("Please ask a relevant question.")
st.session_state['voice_question'] = '' # reset
# Run Semantic Search button
run_btn = st.button("Run Semantic Search")
# If triggered by voice or button
run_search = run_btn or st.session_state.get('run_semantic_search', False)
if run_search:
st.session_state['run_semantic_search'] = False # reset trigger
if not code_input.strip() or not question.strip():
st.error("Both code and question are required.")
elif not code_matches_language(code_input, programming_language):
st.error(f"Language mismatch. Please check your code and language selection.")
else:
with st.spinner("Running Semantic Search..."):
answer = call_groq_api(f"{question}\n\nCode:\n{code_input}")
st.success("Answer:")
st.write(answer) |