File size: 11,528 Bytes
9b13ff2
22a5a1b
c0897d7
4126bd5
6fd750b
4126bd5
 
6fd750b
4126bd5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6fd750b
4126bd5
6fd750b
4126bd5
 
 
 
 
 
 
c0897d7
6fd750b
 
722c417
 
 
 
 
6fd750b
722c417
 
 
 
 
 
6fd750b
722c417
28e5266
4126bd5
 
6fd750b
4126bd5
 
6fd750b
22a5a1b
4126bd5
6fd750b
c0897d7
4126bd5
 
 
 
 
 
 
 
 
9b13ff2
4126bd5
 
6fd750b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4126bd5
6fd750b
 
4126bd5
 
6fd750b
4126bd5
 
6fd750b
4126bd5
6fd750b
4126bd5
 
 
 
6fd750b
 
4126bd5
 
22a5a1b
 
4126bd5
 
 
 
 
 
 
 
 
 
22a5a1b
4126bd5
 
22a5a1b
4126bd5
 
 
 
6fd750b
 
4126bd5
 
23910c3
6fd750b
 
 
4126bd5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6fd750b
4126bd5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5dca394
6fd750b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4126bd5
 
 
 
22a5a1b
4126bd5
 
 
6fd750b
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
import streamlit as st
import difflib
import requests
import datetime
import streamlit.components.v1 as components

# --- CONFIG ---
# Place your API keys here
GROQ_API_KEY = st.secrets.get('GROQ_API_KEY', 'YOUR_GROQ_API_KEY')
BLACKBOX_API_KEY = st.secrets.get('BLACKBOX_API_KEY', 'YOUR_BLACKBOX_API_KEY')

PROGRAMMING_LANGUAGES = ["Python", "JavaScript", "TypeScript", "Java", "C++", "C#"]
SKILL_LEVELS = ["Beginner", "Intermediate", "Expert"]
USER_ROLES = ["Student", "Frontend Developer", "Backend Developer", "Data Scientist"]
EXPLANATION_LANGUAGES = ["English", "Spanish", "Chinese", "Urdu"]
EXAMPLE_QUESTIONS = [
    "What does this function do?",
    "How can I optimize this code?",
    "What are the potential bugs in this code?",
    "How does this algorithm work?",
    "What design patterns are used here?",
    "How can I make this code more readable?"
]

# --- API STUBS ---
def call_groq_api(prompt, model="llama3-70b-8192"):
    # Replace with actual Groq API call
    headers = {"Authorization": f"Bearer {GROQ_API_KEY}", "Content-Type": "application/json"}
    data = {"model": model, "messages": [{"role": "user", "content": prompt}]}
    response = requests.post("https://api.groq.com/openai/v1/chat/completions", json=data, headers=headers)
    if response.status_code == 200:
        return response.json()['choices'][0]['message']['content']
    else:
        return f"[Groq API Error] {response.text}"

def call_blackbox_agent(messages):
    url = "https://api.code.blackbox.ai/v1/chat/completions"
    headers = {
        "Content-Type": "application/json",
        "Authorization": f"Bearer {BLACKBOX_API_KEY}"
    }
    data = {
        "model": "code-chat",
        "messages": messages
    }
    response = requests.post(url, headers=headers, json=data)
    if response.status_code == 200:
        return response.json()["choices"][0]["message"]["content"]
    else:
        # fallback to Groq if Blackbox fails
        return call_groq_api(messages[-1]["content"])

# --- UTILS ---
def code_matches_language(code, language):
    # Simple heuristic, can be improved
    if language.lower() in code.lower():
        return True
    return True  # For demo, always True

def calculate_code_complexity(code):
    # Dummy complexity metric
    lines = code.count('\n') + 1
    return f"{lines} lines"

def get_inline_diff(original, modified):
    diff = difflib.unified_diff(
        original.splitlines(),
        modified.splitlines(),
        lineterm='',
        fromfile='Original',
        tofile='Refactored'
    )
    return '\n'.join(diff)

def is_coding_question(question):
    """
    Uses Blackbox AI agent to check if the question is about programming/code.
    Returns True if yes, False otherwise.
    """
    messages = [
        {"role": "system", "content": "You are a helpful coding assistant."},
        {"role": "user", "content": f"Is the following question about programming or code? Answer only 'yes' or 'no'. Question: {question}"}
    ]
    try:
        response = call_blackbox_agent(messages)
        return 'yes' in response.lower()
    except Exception:
        return False

# --- STREAMLIT APP ---
st.set_page_config(page_title="AI Workflow App", layout="wide")
st.title("AI Assistant with Workflow (Streamlit Edition)")

# Navigation
page = st.sidebar.radio("Navigate", ["Home", "AI Workflow", "Semantic Search"])

if page == "Home":
    st.header("Welcome to the AI Assistant!")
    st.markdown("""
    - **Full AI Workflow:** Complete code analysis pipeline with explanation, refactoring, review, and testing (powered by Groq/Blackbox)
    - **Semantic Search:** Ask natural language questions about your code and get intelligent answers
    """)
    st.info("Select a feature from the sidebar to get started.")

elif page == "AI Workflow":
    st.header("Full AI Workflow")
    code_input = st.text_area("Paste your code here", height=200)
    uploaded_file = st.file_uploader("Or upload a code file", type=["py", "js", "ts", "java", "cpp", "cs"])
    if uploaded_file:
        code_input = uploaded_file.read().decode("utf-8")
        st.text_area("File content", code_input, height=200, key="file_content")
    col1, col2, col3, col4 = st.columns(4)
    with col1:
        programming_language = st.selectbox("Programming Language", PROGRAMMING_LANGUAGES)
    with col2:
        skill_level = st.selectbox("Skill Level", SKILL_LEVELS)
    with col3:
        user_role = st.selectbox("Your Role", USER_ROLES)
    with col4:
        explanation_language = st.selectbox("Explanation Language", EXPLANATION_LANGUAGES)
    if code_input:
        st.caption(f"Complexity: {calculate_code_complexity(code_input)}")
    if st.button("Run Workflow", type="primary"):
        if not code_input.strip():
            st.error("Please paste or upload your code.")
        elif not code_matches_language(code_input, programming_language):
            st.error(f"Language mismatch. Please check your code and language selection.")
        else:
            with st.spinner("Running AI Workflow..."):
                # Simulate workflow steps
                steps = [
                    ("Explain", call_groq_api(f"Explain this {programming_language} code for a {skill_level} {user_role} in {explanation_language}:\n{code_input}")),
                    ("Refactor", call_blackbox_agent([
                        {"role": "system", "content": "You are a helpful coding assistant."},
                        {"role": "user", "content": f"Refactor this {programming_language} code: {code_input}"}
                    ])),
                    ("Review", call_groq_api(f"Review this {programming_language} code for errors and improvements: {code_input}")),
                    ("ErrorDetection", call_groq_api(f"Find bugs in this {programming_language} code: {code_input}")),
                    ("TestGeneration", call_groq_api(f"Generate tests for this {programming_language} code: {code_input}")),
                ]
                timeline = []
                for step, output in steps:
                    timeline.append({"step": step, "output": output})
                st.success("Workflow complete!")
                for t in timeline:
                    st.subheader(t["step"])
                    st.write(t["output"])
                # Show code diff (Original vs Refactored)
                st.subheader("Code Diff (Original vs Refactored)")
                refactored_code = steps[1][1]  # Blackbox agent output
                st.code(get_inline_diff(code_input, refactored_code), language=programming_language.lower())
                # Download report
                report = f"AI Workflow Report\nGenerated on: {datetime.datetime.now()}\nLanguage: {programming_language}\nSkill Level: {skill_level}\nRole: {user_role}\n\n"
                for t in timeline:
                    report += f"## {t['step']}\n{t['output']}\n\n---\n\n"
                st.download_button("Download Report", report, file_name="ai_workflow_report.txt")

elif page == "Semantic Search":
    st.header("Semantic Search")
    code_input = st.text_area("Paste your code here", height=200, key="sem_code")
    uploaded_file = st.file_uploader("Or upload a code file", type=["py", "js", "ts", "java", "cpp", "cs"], key="sem_file")
    if uploaded_file:
        code_input = uploaded_file.read().decode("utf-8")
        st.text_area("File content", code_input, height=200, key="sem_file_content")
    col1, col2, col3, col4 = st.columns(4)
    with col1:
        programming_language = st.selectbox("Programming Language", PROGRAMMING_LANGUAGES, key="sem_lang")
    with col2:
        skill_level = st.selectbox("Skill Level", SKILL_LEVELS, key="sem_skill")
    with col3:
        user_role = st.selectbox("Your Role", USER_ROLES, key="sem_role")
    with col4:
        explanation_language = st.selectbox("Explanation Language", EXPLANATION_LANGUAGES, key="sem_expl")

    st.caption("Example questions:")
    st.write(", ".join(EXAMPLE_QUESTIONS))

    # Session state for question and trigger
    if 'voice_question' not in st.session_state:
        st.session_state['voice_question'] = ''
    if 'run_semantic_search' not in st.session_state:
        st.session_state['run_semantic_search'] = False

    # Voice input widget (Web Speech API)
    components.html('''
    <button id="voice-btn" style="margin-bottom:8px;">🎤 Speak your question</button>
    <span id="voice-status" style="margin-left:8px;"></span>
    <script>
    const btn = document.getElementById('voice-btn');
    const status = document.getElementById('voice-status');
    let recognition;
    if ('webkitSpeechRecognition' in window) {
        recognition = new webkitSpeechRecognition();
        recognition.lang = 'en-US';
        recognition.continuous = false;
        recognition.interimResults = false;
        btn.onclick = function() {
            recognition.start();
            status.textContent = 'Listening...';
        };
        recognition.onresult = function(event) {
            const transcript = event.results[0][0].transcript;
            window.parent.postMessage({isStreamlitMessage: true, type: 'streamlit:setComponentValue', value: transcript}, '*');
            status.textContent = 'Heard: ' + transcript;
        };
        recognition.onerror = function() {
            status.textContent = 'Voice error';
        };
        recognition.onend = function() {
            if (status.textContent === 'Listening...') status.textContent = '';
        };
    } else {
        btn.disabled = true;
        status.textContent = 'Voice not supported';
    }
    </script>
    ''', height=60)

    # --- Main question input ---
    question = st.text_input("Ask a question about your code", value=st.session_state.get('voice_question', ''), key="sem_question")

    # If voice input is received, validate and set question
    # NOTE: Streamlit's JS->Python communication for custom components is limited.
    # For a production app, use a robust Streamlit component for voice input.
    # Here, we simulate the process using session_state for demonstration.
    # You may need to use streamlit_js_eval or a similar package for real-time JS->Python value passing.

    # Simulate voice input: check if the question was updated by voice
    if st.session_state.get('voice_question', '') and not st.session_state.get('run_semantic_search', False):
        voice_input = st.session_state['voice_question']
        if is_coding_question(voice_input):
            st.session_state['run_semantic_search'] = True
            st.success(f"Question recognized: {voice_input}")
        else:
            st.warning("Please ask a relevant question.")
            st.session_state['voice_question'] = ''  # reset

    # Run Semantic Search button
    run_btn = st.button("Run Semantic Search")
    # If triggered by voice or button
    run_search = run_btn or st.session_state.get('run_semantic_search', False)
    if run_search:
        st.session_state['run_semantic_search'] = False  # reset trigger
        if not code_input.strip() or not question.strip():
            st.error("Both code and question are required.")
        elif not code_matches_language(code_input, programming_language):
            st.error(f"Language mismatch. Please check your code and language selection.")
        else:
            with st.spinner("Running Semantic Search..."):
                answer = call_groq_api(f"{question}\n\nCode:\n{code_input}")
                st.success("Answer:")
                st.write(answer)