Spaces:
Sleeping
Sleeping
File size: 10,208 Bytes
9b13ff2 22a5a1b c0897d7 4126bd5 24b3363 4126bd5 24b3363 4126bd5 c0897d7 6fd750b 722c417 6fd750b 722c417 28e5266 24b3363 4126bd5 24b3363 4126bd5 24b3363 22a5a1b 4126bd5 24b3363 c0897d7 4126bd5 9b13ff2 4126bd5 6fd750b 24b3363 6fd750b 4126bd5 24b3363 6fd750b 4126bd5 24b3363 4126bd5 5dca394 6fd750b 24b3363 85a827a 24b3363 e13f103 24b3363 e13f103 24b3363 bbd9ea6 24b3363 85a827a 24b3363 e13f103 bbd9ea6 6fd750b 24b3363 85a827a 4126bd5 22a5a1b 4126bd5 cb24a0a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 |
import streamlit as st
import difflib
import requests
import datetime
import streamlit.components.v1 as components
# --- CONFIG ---
GROQ_API_KEY = st.secrets.get('GROQ_API_KEY', 'YOUR_GROQ_API_KEY')
BLACKBOX_API_KEY = st.secrets.get('BLACKBOX_API_KEY', 'YOUR_BLACKBOX_API_KEY')
PROGRAMMING_LANGUAGES = ["Python", "JavaScript", "TypeScript", "Java", "C++", "C#"]
SKILL_LEVELS = ["Beginner", "Intermediate", "Expert"]
USER_ROLES = ["Student", "Frontend Developer", "Backend Developer", "Data Scientist"]
EXPLANATION_LANGUAGES = ["English", "Spanish", "Chinese", "Urdu"]
EXAMPLE_QUESTIONS = [
"What does this function do?",
"How can I optimize this code?",
"What are the potential bugs in this code?",
"How does this algorithm work?",
"What design patterns are used here?",
"How can I make this code more readable?"
]
# --- API STUBS ---
def call_groq_api(prompt, model="llama3-70b-8192"):
headers = {"Authorization": f"Bearer {GROQ_API_KEY}", "Content-Type": "application/json"}
data = {"model": model, "messages": [{"role": "user", "content": prompt}]}
response = requests.post("https://api.groq.com/openai/v1/chat/completions", json=data, headers=headers)
if response.status_code == 200:
return response.json()['choices'][0]['message']['content']
else:
return f"[Groq API Error] {response.text}"
def call_blackbox_agent(messages):
url = "https://api.code.blackbox.ai/v1/chat/completions"
headers = {
"Content-Type": "application/json",
"Authorization": f"Bearer {BLACKBOX_API_KEY}"
}
data = {
"model": "code-chat",
"messages": messages
}
response = requests.post(url, headers=headers, json=data)
if response.status_code == 200:
return response.json()["choices"][0]["message"]["content"]
else:
return call_groq_api(messages[-1]["content"])
# --- UTILS ---
def code_matches_language(code, language):
# Simple heuristic, can be improved
if language.lower() in code.lower():
return True
return True # For demo, always True
def calculate_code_complexity(code):
# Dummy complexity metric
lines = code.count('\n') + 1
return f"{lines} lines"
def get_inline_diff(original, modified):
diff = difflib.unified_diff(
original.splitlines(),
modified.splitlines(),
lineterm='',
fromfile='Original',
tofile='Refactored'
)
return '\n'.join(diff)
def is_coding_question(question):
messages = [
{"role": "system", "content": "You are a helpful coding assistant."},
{"role": "user", "content": f"Is the following question about programming or code? Answer only 'yes' or 'no'. Question: {question}"}
]
try:
response = call_blackbox_agent(messages)
return 'yes' in response.lower()
except Exception:
return False
# --- STREAMLIT APP ---
st.set_page_config(page_title="AI Workflow App", layout="wide")
st.title("AI Assistant with Workflow (Streamlit Edition)")
# Navigation
page = st.sidebar.radio("Navigate", ["Home", "AI Workflow", "Semantic Search"])
if page == "Home":
st.header("Welcome to the AI Assistant!")
st.markdown("""
- **Full AI Workflow:** Complete code analysis pipeline with explanation, refactoring, review, and testing (powered by Groq/Blackbox)
- **Semantic Search:** Ask natural language questions about your code and get intelligent answers
""")
st.info("Select a feature from the sidebar to get started.")
elif page == "AI Workflow":
st.header("Full AI Workflow")
code_input = st.text_area("Paste your code here", height=200)
uploaded_file = st.file_uploader("Or upload a code file", type=["py", "js", "ts", "java", "cpp", "cs"])
if uploaded_file:
code_input = uploaded_file.read().decode("utf-8")
st.text_area("File content", code_input, height=200, key="file_content")
col1, col2, col3, col4 = st.columns(4)
with col1:
programming_language = st.selectbox("Programming Language", PROGRAMMING_LANGUAGES)
with col2:
skill_level = st.selectbox("Skill Level", SKILL_LEVELS)
with col3:
user_role = st.selectbox("Your Role", USER_ROLES)
with col4:
explanation_language = st.selectbox("Explanation Language", EXPLANATION_LANGUAGES)
if code_input:
st.caption(f"Complexity: {calculate_code_complexity(code_input)}")
if st.button("Run Workflow", type="primary"):
if not code_input.strip():
st.error("Please paste or upload your code.")
elif not code_matches_language(code_input, programming_language):
st.error(f"Language mismatch. Please check your code and language selection.")
else:
with st.spinner("Running AI Workflow..."):
steps = [
("Explain", call_groq_api(f"Explain this {programming_language} code for a {skill_level} {user_role} in {explanation_language}:\n{code_input}")),
("Refactor", call_blackbox_agent([
{"role": "system", "content": "You are a helpful coding assistant."},
{"role": "user", "content": f"Refactor this {programming_language} code: {code_input}"}
])),
("Review", call_groq_api(f"Review this {programming_language} code for errors and improvements: {code_input}")),
("ErrorDetection", call_groq_api(f"Find bugs in this {programming_language} code: {code_input}")),
("TestGeneration", call_groq_api(f"Generate tests for this {programming_language} code: {code_input}")),
]
timeline = []
for step, output in steps:
timeline.append({"step": step, "output": output})
st.success("Workflow complete!")
for t in timeline:
st.subheader(t["step"])
st.write(t["output"])
st.subheader("Code Diff (Original vs Refactored)")
refactored_code = steps[1][1]
st.code(get_inline_diff(code_input, refactored_code), language=programming_language.lower())
report = f"AI Workflow Report\nGenerated on: {datetime.datetime.now()}\nLanguage: {programming_language}\nSkill Level: {skill_level}\nRole: {user_role}\n\n"
for t in timeline:
report += f"## {t['step']}\n{t['output']}\n\n---\n\n"
st.download_button("Download Report", report, file_name="ai_workflow_report.txt")
elif page == "Semantic Search":
st.header("Semantic Search")
code_input = st.text_area("Paste your code here", height=200, key="sem_code")
uploaded_file = st.file_uploader("Or upload a code file", type=["py", "js", "ts", "java", "cpp", "cs"], key="sem_file")
if uploaded_file:
code_input = uploaded_file.read().decode("utf-8")
st.text_area("File content", code_input, height=200, key="sem_file_content")
col1, col2, col3, col4 = st.columns(4)
with col1:
programming_language = st.selectbox("Programming Language", PROGRAMMING_LANGUAGES, key="sem_lang")
with col2:
skill_level = st.selectbox("Skill Level", SKILL_LEVELS, key="sem_skill")
with col3:
user_role = st.selectbox("Your Role", USER_ROLES, key="sem_role")
with col4:
explanation_language = st.selectbox("Explanation Language", EXPLANATION_LANGUAGES, key="sem_expl")
st.caption("Example questions:")
st.write(", ".join(EXAMPLE_QUESTIONS))
# --- Voice input widget ---
if "sem_question" not in st.session_state:
st.session_state["sem_question"] = ""
voice_input = components.html('''
<button id="voice-btn" style="margin-bottom:8px;">🎤 Speak your question</button>
<span id="voice-status" style="margin-left:8px;"></span>
<script>
const btn = document.getElementById('voice-btn');
const status = document.getElementById('voice-status');
let recognition;
if ('webkitSpeechRecognition' in window) {
recognition = new webkitSpeechRecognition();
recognition.lang = 'en-US';
recognition.continuous = false;
recognition.interimResults = false;
btn.onclick = function() {
recognition.start();
status.textContent = 'Listening...';
};
recognition.onresult = function(event) {
const transcript = event.results[0][0].transcript;
window.parent.postMessage({isStreamlitMessage: true, type: 'streamlit:setComponentValue', value: transcript}, '*');
status.textContent = 'Heard: ' + transcript;
};
recognition.onerror = function() {
status.textContent = 'Voice error';
};
recognition.onend = function() {
if (status.textContent === 'Listening...') status.textContent = '';
};
} else {
btn.disabled = true;
status.textContent = 'Voice not supported';
}
</script>
''', height=60)
# If voice input is received, update the question field directly in session state
if voice_input and isinstance(voice_input, str) and voice_input.strip():
if is_coding_question(voice_input):
st.session_state["sem_question"] = voice_input
st.success(f"Question recognized: {voice_input}")
else:
st.warning("Please ask a relevant question.")
# This field is always in sync with session state, whether typed or spoken
question = st.text_input("Ask a question about your code", key="sem_question")
# Run Semantic Search button
if st.button("Run Semantic Search"):
if not code_input.strip() or not question.strip():
st.error("Both code and question are required.")
elif not code_matches_language(code_input, programming_language):
st.error(f"Language mismatch. Please check your code and language selection.")
else:
with st.spinner("Running Semantic Search..."):
answer = call_groq_api(f"{question}\n\nCode:\n{code_input}")
st.success("Answer:")
st.write(answer) |