File size: 13,224 Bytes
8baf080
7823cea
016fe76
7823cea
 
2592e48
36f95d9
b6a67be
51fa2e3
36f95d9
9bc27e3
2592e48
51fa2e3
 
9c5866b
8baf080
9c5866b
d9e1976
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9c5866b
 
 
 
 
 
 
 
 
 
 
a36d980
b6a67be
d9e1976
b6a67be
51fa2e3
 
b6a67be
 
36f95d9
8baf080
51fa2e3
 
 
 
 
 
 
 
 
8baf080
51fa2e3
8baf080
d9e1976
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8baf080
51fa2e3
b6a67be
8d88e43
ae0535c
8d88e43
37efbf7
 
288a128
6773de5
288a128
8baf080
288a128
97364cf
9c5866b
 
 
 
 
e4617b7
8d88e43
 
288a128
e4617b7
8196356
8baf080
6c43e7e
288a128
 
 
6c43e7e
288a128
51fa2e3
b6a67be
8baf080
b6a67be
 
 
 
9c5866b
b6a67be
 
9c5866b
b6a67be
 
 
8196356
288a128
f5a1125
016fe76
 
6c43e7e
016fe76
 
 
 
 
 
6c43e7e
b6a67be
288a128
6c43e7e
9c5866b
016fe76
 
6c43e7e
8baf080
9c5866b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8baf080
 
9c5866b
016fe76
288a128
016fe76
e4617b7
9c5866b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8baf080
97364cf
d9e1976
 
 
7823cea
d9e1976
 
 
 
 
 
 
 
59cebaf
d9e1976
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9bc27e3
 
d9e1976
ff6b580
d9e1976
288a128
bf687e5
7823cea
d9e1976
bf687e5
b6a67be
 
 
d9e1976
b6a67be
d9e1976
b6a67be
d9e1976
51fa2e3
b6a67be
d9e1976
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
288a128
d9e1976
 
288a128
d9e1976
288a128
 
 
 
 
bf687e5
288a128
8baf080
 
 
 
 
 
 
 
 
 
 
 
8fed1b4
d9e1976
fe816e4
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
import os
import numpy as np
from PIL import Image
import gradio as gr
from deepface import DeepFace
from datasets import load_dataset
import pickle
from io import BytesIO
from huggingface_hub import upload_file, hf_hub_download, list_repo_files
from pathlib import Path
import gc
import requests
import time
import shutil
import tarfile
import tensorflow as tf

# Configuración de GPU
print("Dispositivos GPU disponibles:", tf.config.list_physical_devices('GPU'))

# Configurar memoria GPU
gpus = tf.config.list_physical_devices('GPU')
if gpus:
    try:
        # Permitir crecimiento de memoria
        for gpu in gpus:
            tf.config.experimental.set_memory_growth(gpu, True)
        print("✅ GPU configurada correctamente")
        
        # Configurar para usar solo GPU
        tf.config.set_visible_devices(gpus[0], 'GPU')
        print(f"✅ Usando GPU: {gpus[0]}")
    except RuntimeError as e:
        print(f"⚠️ Error configurando GPU: {e}")
else:
    print("⚠️ No se detectó GPU, usando CPU")

# Configurar para usar mixed precision
tf.keras.mixed_precision.set_global_policy('mixed_float16')

# 🔁 Limpiar almacenamiento temporal si existe
def clean_temp_dirs():
    print("🧹 Limpiando carpetas temporales...")
    for folder in ["embeddings", "batches"]:
        path = Path(folder)
        if path.exists() and path.is_dir():
            shutil.rmtree(path)
            print(f"✅ Carpeta eliminada: {folder}")
        path.mkdir(exist_ok=True)

clean_temp_dirs()

# 📁 Parámetros
DATASET_ID = "Segizu/facial-recognition-preview"
EMBEDDINGS_SUBFOLDER = "embeddings"
LOCAL_EMB_DIR = Path("embeddings")
LOCAL_EMB_DIR.mkdir(exist_ok=True)
HF_TOKEN = os.getenv("HF_TOKEN")
headers = {"Authorization": f"Bearer {HF_TOKEN}"} if HF_TOKEN else {}

# 💾 Configuración
MAX_TEMP_STORAGE_GB = 40
UPLOAD_EVERY = 50

def get_folder_size(path):
    total = 0
    for dirpath, _, filenames in os.walk(path):
        for f in filenames:
            fp = os.path.join(dirpath, f)
            total += os.path.getsize(fp)
    return total / (1024 ** 3)

def preprocess_image(img: Image.Image) -> np.ndarray:
    # Convertir a RGB si no lo es
    if img.mode != 'RGB':
        img = img.convert('RGB')
    
    # Obtener la orientación EXIF si existe
    try:
        exif = img._getexif()
        if exif is not None:
            orientation = exif.get(274)  # 274 es el tag de orientación en EXIF
            if orientation is not None:
                # Rotar la imagen según la orientación EXIF
                if orientation == 3:
                    img = img.rotate(180, expand=True)
                elif orientation == 6:
                    img = img.rotate(270, expand=True)
                elif orientation == 8:
                    img = img.rotate(90, expand=True)
    except:
        pass  # Si no hay EXIF o hay error, continuamos con la imagen original
    
    # Intentar detectar la orientación del rostro
    try:
        # Convertir a array numpy para DeepFace
        img_array = np.array(img)
        # Detectar rostros con GPU
        face_objs = DeepFace.extract_faces(
            img_path=img_array,
            target_size=(160, 160),
            detector_backend='retinaface',
            enforce_detection=False
        )
        
        if face_objs and len(face_objs) > 0:
            # Si se detecta un rostro, usar la imagen detectada
            img_array = face_objs[0]['face']
            return img_array
    except:
        pass  # Si falla la detección, continuamos con el procesamiento normal
    
    # Si no se detectó rostro o falló la detección, redimensionar la imagen original
    img_resized = img.resize((160, 160), Image.Resampling.LANCZOS)
    return np.array(img_resized)

# ✅ Cargar CSV desde el dataset
dataset = load_dataset(
    "csv",
    data_files="metadata.csv",
    split="train",
    column_names=["image"],
    header=0
)
def build_database():
    print(f"📊 Uso actual de almacenamiento temporal INICIO: {get_folder_size('.'):.2f} GB")
    print("🔄 Generando embeddings...")
    batch_size = 10
    archive_batch_size = 50
    batch_files = []
    batch_index = 0
    ARCHIVE_DIR = Path("batches")
    ARCHIVE_DIR.mkdir(exist_ok=True)

    for i in range(0, len(dataset), batch_size):
        batch = dataset[i:i + batch_size]
        print(f"📦 Lote {i // batch_size + 1}/{(len(dataset) + batch_size - 1) // batch_size}")

        for j in range(len(batch["image"])):
            image_url = batch["image"][j]

            if not isinstance(image_url, str) or not image_url.startswith("http") or image_url.strip().lower() == "image":
                print(f"⚠️ Saltando {i + j} - URL inválida: {image_url}")
                continue

            name = f"image_{i + j}"
            filename = LOCAL_EMB_DIR / f"{name}.pkl"

            # Verificar si ya fue subido
            try:
                hf_hub_download(
                    repo_id=DATASET_ID,
                    repo_type="dataset",
                    filename=f"{EMBEDDINGS_SUBFOLDER}/batch_{batch_index:03}.tar.gz",
                    token=HF_TOKEN
                )
                print(f"⏩ Ya existe en remoto: {name}.pkl")
                continue
            except:
                pass

            try:
                response = requests.get(image_url, headers=headers, timeout=10)
                response.raise_for_status()
                img = Image.open(BytesIO(response.content)).convert("RGB")

                img_processed = preprocess_image(img)
                embedding = DeepFace.represent(
                    img_path=img_processed,
                    model_name="Facenet",
                    enforce_detection=False
                )[0]["embedding"]

                with open(filename, "wb") as f:
                    pickle.dump({"name": name, "img": img, "embedding": embedding}, f)

                batch_files.append(filename)
                del img_processed
                gc.collect()

                if len(batch_files) >= archive_batch_size or get_folder_size(".") > MAX_TEMP_STORAGE_GB:
                    archive_path = ARCHIVE_DIR / f"batch_{batch_index:03}.tar.gz"
                    with tarfile.open(archive_path, "w:gz") as tar:
                        for file in batch_files:
                            tar.add(file, arcname=file.name)

                    print(f"📦 Empaquetado: {archive_path}")

                    upload_file(
                        path_or_fileobj=str(archive_path),
                        path_in_repo=f"{EMBEDDINGS_SUBFOLDER}/{archive_path.name}",
                        repo_id=DATASET_ID,
                        repo_type="dataset",
                        token=HF_TOKEN
                    )
                    print(f"✅ Subido: {archive_path.name}")

                    for f in batch_files:
                        f.unlink()
                    archive_path.unlink()
                    print("🧹 Limpieza completada tras subida")

                    batch_files = []
                    batch_index += 1
                    time.sleep(2)
                    print(f"📊 Uso actual FINAL: {get_folder_size('.'):.2f} GB")

            except Exception as e:
                print(f"❌ Error en {name}: {e}")
                continue

    if batch_files:
        archive_path = ARCHIVE_DIR / f"batch_{batch_index:03}.tar.gz"
        with tarfile.open(archive_path, "w:gz") as tar:
            for file in batch_files:
                tar.add(file, arcname=file.name)

        print(f"📦 Empaquetado final: {archive_path}")

        upload_file(
            path_or_fileobj=str(archive_path),
            path_in_repo=f"{EMBEDDINGS_SUBFOLDER}/{archive_path.name}",
            repo_id=DATASET_ID,
            repo_type="dataset",
            token=HF_TOKEN
        )

        for f in batch_files:
            f.unlink()
        archive_path.unlink()
        print("✅ Subida y limpieza final")

# 🔍 Buscar similitudes
def find_similar_faces(uploaded_image: Image.Image):
    if uploaded_image is None:
        return [], "⚠ Por favor, sube una imagen primero"
        
    try:
        print("🔄 Procesando imagen de entrada...")
        # Convertir a RGB si no lo es
        if uploaded_image.mode != 'RGB':
            uploaded_image = uploaded_image.convert('RGB')
        
        # Mostrar dimensiones de la imagen
        print(f"📐 Dimensiones de la imagen: {uploaded_image.size}")
        
        img_processed = preprocess_image(uploaded_image)
        print("✅ Imagen preprocesada correctamente")
        
        # Intentar primero con enforce_detection=True
        try:
            query_embedding = DeepFace.represent(
                img_path=img_processed,
                model_name="Facenet",
                enforce_detection=True,
                detector_backend='retinaface'
            )[0]["embedding"]
            print("✅ Rostro detectado con enforce_detection=True")
        except Exception as e:
            print(f"⚠ No se pudo detectar rostro con enforce_detection=True, intentando con False: {str(e)}")
            # Si falla, intentar con enforce_detection=False
            query_embedding = DeepFace.represent(
                img_path=img_processed,
                model_name="Facenet",
                enforce_detection=False,
                detector_backend='retinaface'
            )[0]["embedding"]
            print("✅ Embedding generado con enforce_detection=False")
        
        del img_processed
        gc.collect()
        
    except Exception as e:
        print(f"❌ Error en procesamiento de imagen: {str(e)}")
        return [], f"⚠ Error procesando imagen: {str(e)}"

    similarities = []
    print("🔍 Buscando similitudes en la base de datos...")

    try:
        embedding_files = [
            f for f in list_repo_files(DATASET_ID, repo_type="dataset", token=HF_TOKEN)
            if f.startswith(f"{EMBEDDINGS_SUBFOLDER}/") and f.endswith(".tar.gz")
        ]
        print(f"📁 Encontrados {len(embedding_files)} archivos de embeddings")
    except Exception as e:
        print(f"❌ Error obteniendo archivos: {str(e)}")
        return [], f"⚠ Error obteniendo archivos: {str(e)}"

    # Procesar en lotes para mejor rendimiento
    batch_size = 10
    for i in range(0, len(embedding_files), batch_size):
        batch_files = embedding_files[i:i + batch_size]
        print(f"📦 Procesando lote {i//batch_size + 1}/{(len(embedding_files) + batch_size - 1)//batch_size}")
        
        for file_path in batch_files:
            try:
                file_bytes = requests.get(
                    f"https://huggingface.co/datasets/{DATASET_ID}/resolve/main/{file_path}",
                    headers=headers,
                    timeout=30
                ).content
                
                # Crear un archivo temporal para el tar.gz
                temp_archive = Path("temp_archive.tar.gz")
                with open(temp_archive, "wb") as f:
                    f.write(file_bytes)
                
                # Extraer el contenido
                with tarfile.open(temp_archive, "r:gz") as tar:
                    tar.extractall(path="temp_extract")
                
                # Procesar cada archivo .pkl en el tar
                for pkl_file in Path("temp_extract").glob("*.pkl"):
                    with open(pkl_file, "rb") as f:
                        record = pickle.load(f)
                    
                    name = record["name"]
                    img = record["img"]
                    emb = record["embedding"]

                    dist = np.linalg.norm(np.array(query_embedding) - np.array(emb))
                    sim_score = 1 / (1 + dist)
                    similarities.append((sim_score, name, np.array(img)))
                
                # Limpiar archivos temporales
                shutil.rmtree("temp_extract")
                temp_archive.unlink()
                
            except Exception as e:
                print(f"⚠ Error procesando {file_path}: {e}")
                continue

    if not similarities:
        return [], "⚠ No se encontraron similitudes en la base de datos"

    print(f"✅ Encontradas {len(similarities)} similitudes")
    similarities.sort(reverse=True)
    top = similarities[:5]
    gallery = [(img, f"{name} - Similitud: {sim:.2f}") for sim, name, img in top]
    summary = "\n".join([f"{name} - Similitud: {sim:.2f}" for sim, name, _ in top])
    return gallery, summary

# 🎛️ Interfaz Gradio
with gr.Blocks() as demo:
    gr.Markdown("## 🔍 Reconocimiento facial con DeepFace + ZeroGPU")
    with gr.Row():
        image_input = gr.Image(label="📤 Sube una imagen", type="pil")
        find_btn = gr.Button("🔎 Buscar similares")
    gallery = gr.Gallery(label="📸 Rostros similares")
    summary = gr.Textbox(label="🧠 Detalle", lines=6)
    find_btn.click(fn=find_similar_faces, inputs=image_input, outputs=[gallery, summary])

    with gr.Row():
        build_btn = gr.Button("⚙️ Construir base de embeddings (usa GPU)")
        build_btn.click(fn=build_database, inputs=[], outputs=[])

demo.launch(share=True)