toxicComment / app.py
SkullFaceFire's picture
Update app.py
3604a15 verified
raw
history blame contribute delete
964 Bytes
import tensorflow as tf
from tensorflow.keras.layers import TextVectorization,LSTM
import gradio as gr
import pandas as pd
import os
df = pd.read_csv('train.csv')
MAX_FEATURES = 200000
vectorizer = TextVectorization(max_tokens=MAX_FEATURES,
output_sequence_length=1800,
output_mode='int')
# Adapt the vectorizer to the training data
vectorizer.adapt(df['comment_text'].values)
model = tf.keras.models.load_model('toxicity.keras')
def score_comment(comment):
vectorized_comment = vectorizer([comment])
results = model.predict(vectorized_comment)
text = ''
for idx, col in enumerate(df.columns[2:]):
text += '{}: {}\n'.format(col, results[0][idx]>0.5)
return text
interface = gr.Interface(fn=score_comment,
inputs=gr.Textbox(lines=2, placeholder='Comment to score'),
outputs='text')
interface.launch(share=True)