File size: 1,390 Bytes
69847a0
c5a0bf8
20688a8
c5a0bf8
29e22ca
c5a0bf8
20688a8
4159c4a
20688a8
 
 
69847a0
 
 
4159c4a
 
c5a0bf8
 
 
4159c4a
 
c5a0bf8
 
4159c4a
 
 
 
69847a0
4159c4a
 
69847a0
 
 
4159c4a
69847a0
 
4159c4a
 
 
69847a0
 
4159c4a
69847a0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
from fastapi import FastAPI, Request
from pydantic import BaseModel
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
import torch

app = FastAPI()

# Load model và tokenizer
model_name = "VietAI/vit5-base"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)

# Định nghĩa schema đầu vào
class SummaryRequest(BaseModel):
    text: str

@app.get("/")
def read_root():
    return {"message": "VietAI viT5 summarization API is running."}

@app.post("/summarize")
def summarize(request: SummaryRequest):
    text = request.text.strip()
    if not text:
        return {"summary": ""}

    prefix = "vietnews: " + text + " </s>"
    encoding = tokenizer(prefix, return_tensors="pt", truncation=True, max_length=512)
    input_ids = encoding["input_ids"].to(device)
    attention_mask = encoding["attention_mask"].to(device)

    outputs = model.generate(
        input_ids=input_ids,
        attention_mask=attention_mask,
        max_length=128,     # Tóm tắt ngắn gọn
        do_sample=False,    # Không sampling
        num_beams=1         # Greedy decoding (nhanh nhất)
    )

    summary = tokenizer.decode(outputs[0], skip_special_tokens=True, clean_up_tokenization_spaces=True)
    return {"summary": summary}