Spaces:
Sleeping
Sleeping
File size: 13,133 Bytes
e8434f3 25f8aca 1f216d0 e8434f3 e8c4686 352df25 1f216d0 352df25 e8c4686 352df25 e8c4686 352df25 e8c4686 352df25 e8c4686 352df25 e8c4686 352df25 e8c4686 1f216d0 e8434f3 e8c4686 352df25 1f216d0 e8434f3 25f8aca e8434f3 25f8aca e8434f3 25f8aca 352df25 25f8aca e8434f3 ea5000d e8c4686 e8434f3 ea5000d e8c4686 e8434f3 25f8aca e8434f3 25f8aca e8434f3 25f8aca e8434f3 352df25 e8c4686 352df25 acb8402 e8c4686 352df25 ea5000d e8c4686 352df25 e8c4686 352df25 e8c4686 352df25 e8c4686 352df25 e8434f3 25f8aca e8434f3 352df25 25f8aca e8434f3 352df25 e8434f3 352df25 e8c4686 e8434f3 e8c4686 e8434f3 ea5000d e8c4686 e8434f3 e8c4686 352df25 e8434f3 352df25 25f8aca 352df25 acb8402 352df25 e8c4686 352df25 e8c4686 1f216d0 352df25 e8434f3 1f216d0 25f8aca e8434f3 aefa341 e8434f3 25f8aca e8434f3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 |
import os
import logging
from typing import Optional
from datetime import datetime
from contextlib import asynccontextmanager
from fastapi import FastAPI, HTTPException, Depends, Security, status
from fastapi.security import HTTPBearer, HTTPAuthorizationCredentials
from fastapi.middleware.cors import CORSMiddleware
from pydantic import BaseModel, Field
import uvicorn
# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Global variables for model
model = None
tokenizer = None
model_loaded = False
torch_available = False
@asynccontextmanager
async def lifespan(app: FastAPI):
# Startup
global model, tokenizer, model_loaded, torch_available
logger.info("Real LLM AI Assistant starting up...")
try:
# Try to import torch and transformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
torch_available = True
logger.info("PyTorch and Transformers available!")
# Use a better conversational model
model_name = os.getenv("MODEL_NAME", "microsoft/DialoGPT-small") # Use small for better compatibility
logger.info(f"Loading real LLM model: {model_name}")
# Load tokenizer
tokenizer = AutoTokenizer.from_pretrained(model_name)
if tokenizer.pad_token is None:
tokenizer.pad_token = tokenizer.eos_token
# Load model with optimizations
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype=torch.float32,
low_cpu_mem_usage=True,
pad_token_id=tokenizer.eos_token_id
)
model_loaded = True
logger.info("Real LLM model loaded successfully!")
except ImportError as e:
logger.warning(f"PyTorch/Transformers not available: {e}")
logger.info("Running in smart response mode")
torch_available = False
model_loaded = False
except Exception as e:
logger.warning(f"Could not load LLM model: {e}")
logger.info("Running in smart response mode")
model_loaded = False
yield
# Shutdown
logger.info("AI Assistant shutting down...")
# Initialize FastAPI app with lifespan
app = FastAPI(
title="Real LLM AI Agent API",
description="AI Agent powered by actual LLM models with fallback",
version="4.1.0",
lifespan=lifespan
)
# CORS middleware
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
# Security
security = HTTPBearer()
# Configuration
API_KEYS = {
os.getenv("API_KEY_1", "27Eud5J73j6SqPQAT2ioV-CtiCg-p0WNqq6I4U0Ig6E"): "user1",
os.getenv("API_KEY_2", "QbzG2CqHU1Nn6F1EogZ1d3dp8ilRTMJQBwTJDQBzS-U"): "user2",
}
# Request/Response models
class ChatRequest(BaseModel):
message: str = Field(..., min_length=1, max_length=2000)
max_length: Optional[int] = Field(200, ge=50, le=500)
temperature: Optional[float] = Field(0.8, ge=0.1, le=1.5)
top_p: Optional[float] = Field(0.9, ge=0.1, le=1.0)
do_sample: Optional[bool] = Field(True)
class ChatResponse(BaseModel):
response: str
model_used: str
timestamp: str
processing_time: float
tokens_used: int
model_loaded: bool
class HealthResponse(BaseModel):
status: str
model_loaded: bool
timestamp: str
def verify_api_key(credentials: HTTPAuthorizationCredentials = Security(security)) -> str:
"""Verify API key authentication"""
api_key = credentials.credentials
if api_key not in API_KEYS:
raise HTTPException(
status_code=status.HTTP_401_UNAUTHORIZED,
detail="Invalid API key"
)
return API_KEYS[api_key]
def get_smart_fallback_response(message: str) -> str:
"""Smart fallback responses when LLM is not available"""
message_lower = message.lower()
if any(word in message_lower for word in ["hello", "hi", "hey", "hii"]):
return """Hello! I'm your AI assistant. I'm currently running in smart mode while the full LLM model loads.
I can still help you with questions about:
• Machine Learning and AI concepts
• Programming and Python
• Data Science topics
• Technology explanations
• General conversations
What would you like to know about? I'll do my best to provide helpful information!"""
elif any(word in message_lower for word in ["machine learning", "ml"]):
return """Machine learning is a fascinating field! It's a subset of artificial intelligence where computers learn to make predictions or decisions by finding patterns in data, rather than being explicitly programmed for every scenario.
Key concepts:
• **Training**: The model learns from example data
• **Patterns**: It identifies relationships and trends
• **Prediction**: It applies learned patterns to new data
• **Improvement**: Performance gets better with more data
Common applications include recommendation systems (like Netflix suggestions), image recognition, natural language processing, and autonomous vehicles.
Would you like me to explain any specific aspect of machine learning in more detail?"""
elif any(word in message_lower for word in ["ai", "artificial intelligence"]):
return """Artificial Intelligence is the simulation of human intelligence in machines! It's about creating systems that can think, learn, and solve problems.
Current AI can:
• Understand and generate human language
• Recognize images and objects
• Play complex games at superhuman levels
• Drive cars autonomously
• Discover new medicines
Types of AI:
• **Narrow AI**: Specialized for specific tasks (what we have today)
• **General AI**: Human-level intelligence across all domains (future goal)
• **Super AI**: Beyond human intelligence (theoretical)
AI is transforming every industry and changing how we work, learn, and live. What aspect of AI interests you most?"""
elif any(word in message_lower for word in ["python", "programming"]):
return """Python is an excellent choice for AI and programming! It's known for its simple, readable syntax and powerful capabilities.
Why Python is great:
• **Easy to learn**: Clear, English-like syntax
• **Versatile**: Web development, AI, data science, automation
• **Rich ecosystem**: Thousands of libraries and frameworks
• **Community**: Large, helpful developer community
For AI/ML specifically:
• **NumPy**: Numerical computing
• **Pandas**: Data manipulation
• **Scikit-learn**: Machine learning algorithms
• **TensorFlow/PyTorch**: Deep learning
Python lets you focus on solving problems rather than wrestling with complex syntax. Are you interested in learning Python for a specific purpose?"""
else:
return f"""I understand you're asking about: "{message}"
I'm currently running in smart mode while the full LLM model loads. I can provide helpful information on topics like:
• **Technology**: AI, machine learning, programming
• **Science**: Data science, computer science concepts
• **Learning**: Programming languages, career advice
• **General**: Explanations, discussions, problem-solving
Could you be more specific about what you'd like to know? I'm here to help and will provide the most useful information I can!
If you're looking for creative writing, storytelling, or very specific technical details, the full LLM model will provide even better responses once it's loaded."""
def generate_llm_response(message: str, max_length: int = 200, temperature: float = 0.8, top_p: float = 0.9, do_sample: bool = True) -> tuple:
"""Generate response using actual LLM model or smart fallback"""
global model, tokenizer, model_loaded, torch_available
if not torch_available:
return get_smart_fallback_response(message), "smart_fallback_mode", len(message.split())
if not model_loaded or model is None or tokenizer is None:
return get_smart_fallback_response(message), "smart_fallback_mode", len(message.split())
try:
import torch
# Prepare input with conversation format
input_text = f"Human: {message}\nAssistant:"
# Tokenize input
inputs = tokenizer.encode(input_text, return_tensors="pt")
# Generate response
with torch.no_grad():
outputs = model.generate(
inputs,
max_length=inputs.shape[1] + max_length,
temperature=temperature,
top_p=top_p,
do_sample=do_sample,
pad_token_id=tokenizer.eos_token_id,
eos_token_id=tokenizer.eos_token_id,
num_return_sequences=1,
repetition_penalty=1.1,
length_penalty=1.0
)
# Decode response
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
# Extract only the assistant's response
if "Assistant:" in response:
response = response.split("Assistant:")[-1].strip()
# Remove the input text if it's still there
if input_text.replace("Assistant:", "").strip() in response:
response = response.replace(input_text.replace("Assistant:", "").strip(), "").strip()
# Clean up the response
response = response.strip()
if not response or len(response) < 10:
return get_smart_fallback_response(message), "smart_fallback_mode", len(message.split())
# Count tokens
tokens_used = len(tokenizer.encode(response))
return response, os.getenv("MODEL_NAME", "microsoft/DialoGPT-small"), tokens_used
except Exception as e:
logger.error(f"Error generating LLM response: {str(e)}")
return get_smart_fallback_response(message), "smart_fallback_mode", len(message.split())
@app.get("/", response_model=HealthResponse)
async def root():
"""Health check endpoint"""
return HealthResponse(
status="healthy",
model_loaded=model_loaded,
timestamp=datetime.now().isoformat()
)
@app.get("/health", response_model=HealthResponse)
async def health_check():
"""Detailed health check"""
return HealthResponse(
status="healthy" if model_loaded else "smart_mode",
model_loaded=model_loaded,
timestamp=datetime.now().isoformat()
)
@app.post("/chat", response_model=ChatResponse)
async def chat(
request: ChatRequest,
user: str = Depends(verify_api_key)
):
"""Main chat endpoint using real LLM model or smart fallback"""
start_time = datetime.now()
try:
# Generate response using actual LLM or smart fallback
response_text, model_used, tokens_used = generate_llm_response(
request.message,
request.max_length,
request.temperature,
request.top_p,
request.do_sample
)
# Calculate processing time
processing_time = (datetime.now() - start_time).total_seconds()
return ChatResponse(
response=response_text,
model_used=model_used,
timestamp=datetime.now().isoformat(),
processing_time=processing_time,
tokens_used=tokens_used,
model_loaded=model_loaded
)
except Exception as e:
logger.error(f"Error in chat endpoint: {str(e)}")
# Even if there's an error, provide a helpful response
return ChatResponse(
response="I'm experiencing some technical difficulties, but I'm still here to help! Could you please try rephrasing your question?",
model_used="error_recovery_mode",
timestamp=datetime.now().isoformat(),
processing_time=(datetime.now() - start_time).total_seconds(),
tokens_used=0,
model_loaded=model_loaded
)
@app.get("/models")
async def get_model_info(user: str = Depends(verify_api_key)):
"""Get information about the loaded model"""
return {
"model_name": os.getenv("MODEL_NAME", "microsoft/DialoGPT-small"),
"model_loaded": model_loaded,
"torch_available": torch_available,
"status": "active" if model_loaded else "smart_fallback_mode",
"capabilities": [
"Real LLM text generation" if model_loaded else "Smart fallback responses",
"Conversational AI responses",
"Dynamic response generation" if model_loaded else "Contextual smart responses",
"Adjustable temperature and top_p" if model_loaded else "Fixed high-quality responses",
"Natural language understanding"
],
"version": "4.1.0",
"type": "Real LLM Model" if model_loaded else "Smart Fallback Mode"
}
if __name__ == "__main__":
# For Hugging Face Spaces
port = int(os.getenv("PORT", "7860"))
uvicorn.run(
app,
host="0.0.0.0",
port=port,
reload=False
)
|