File size: 6,786 Bytes
63ee3e5 d744aff 63ee3e5 e2fc711 16d930f e2fc711 63ee3e5 16d930f 63ee3e5 e2fc711 d744aff e2fc711 63ee3e5 c098e72 63ee3e5 c7f56a8 c098e72 c7f56a8 e2fc711 16d930f e2fc711 d744aff e2fc711 d744aff 16d930f d744aff 16d930f 1ee4794 d744aff 63ee3e5 e2fc711 d744aff e2fc711 63ee3e5 d744aff 63ee3e5 e2fc711 d744aff e2fc711 d744aff c7f56a8 d744aff 63ee3e5 e2fc711 1ee4794 e2fc711 d744aff c7f56a8 16d930f 1ee4794 c7f56a8 d744aff 63ee3e5 e2fc711 1ee4794 e2fc711 d744aff 16d930f d744aff 1ee4794 d744aff 16d930f d744aff e2fc711 1ee4794 e2fc711 63ee3e5 d744aff 16d930f d744aff 16d930f c7f56a8 63ee3e5 d744aff 16d930f 63ee3e5 d744aff 16d930f 63ee3e5 d744aff 16d930f 63ee3e5 d744aff 63ee3e5 d744aff 63ee3e5 c7f56a8 16d930f c7f56a8 d744aff c7f56a8 63ee3e5 d744aff 63ee3e5 e2fc711 1ee4794 e2fc711 63ee3e5 d744aff 63ee3e5 16d930f 63ee3e5 16d930f 63ee3e5 d744aff 16d930f 63ee3e5 e2fc711 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 |
import gradio as gr
import torch
import numpy as np
import librosa
from transformers import pipeline, VitsModel, AutoTokenizer
import scipy # if needed for processing
# ------------------------------------------------------
# 1. ASR Pipeline (English) using Whisper-small
# ------------------------------------------------------
asr = pipeline(
"automatic-speech-recognition",
model="openai/whisper-small"
)
# ------------------------------------------------------
# 2. Translation Models (3 languages)
# ------------------------------------------------------
translation_models = {
"Spanish": "Helsinki-NLP/opus-mt-en-es",
"Chinese": "Helsinki-NLP/opus-mt-en-zh",
"Japanese": "Helsinki-NLP/opus-mt-en-ja"
}
translation_tasks = {
"Spanish": "translation_en_to_es",
"Chinese": "translation_en_to_zh",
"Japanese": "translation_en_to_ja"
}
# ------------------------------------------------------
# 3. TTS Model Configurations
# For Spanish, we keep the MMS TTS.
# For Chinese & Japanese, use myshell-ai/MeloTTS-Chinese.
# ------------------------------------------------------
tts_config = {
"Spanish": {
"model_id": "facebook/mms-tts-spa", # MMS Spanish
"architecture": "vits"
},
"Chinese": {
"model_id": "myshell-ai/MeloTTS-Chinese",
"architecture": "vits"
},
"Japanese": {
"model_id": "myshell-ai/MeloTTS-Japanese",
"architecture": "vits"
}
}
# ------------------------------------------------------
# 4. Caches
# ------------------------------------------------------
translator_cache = {}
tts_model_cache = {} # store (model, tokenizer, architecture)
# ------------------------------------------------------
# 5. Translator Helper
# ------------------------------------------------------
def get_translator(lang):
if lang in translator_cache:
return translator_cache[lang]
model_name = translation_models[lang]
task_name = translation_tasks[lang]
translator = pipeline(task_name, model=model_name)
translator_cache[lang] = translator
return translator
# ------------------------------------------------------
# 6. TTS Loading Helper
# ------------------------------------------------------
def get_tts_model(lang):
"""
Loads (model, tokenizer, architecture) from Hugging Face once, then caches.
"""
if lang in tts_model_cache:
return tts_model_cache[lang]
config = tts_config.get(lang)
if config is None:
raise ValueError(f"No TTS config found for language: {lang}")
model_id = config["model_id"]
arch = config["architecture"]
try:
# Assuming the model follows VITS-based inference
model = VitsModel.from_pretrained(model_id)
tokenizer = AutoTokenizer.from_pretrained(model_id)
except Exception as e:
raise RuntimeError(f"Failed to load TTS model {model_id}: {e}")
tts_model_cache[lang] = (model, tokenizer, arch)
return tts_model_cache[lang]
# ------------------------------------------------------
# 7. TTS Inference Helper
# ------------------------------------------------------
def run_tts_inference(lang, text):
"""
Generates waveform using the loaded TTS model and tokenizer.
Returns (sample_rate, np_array).
"""
model, tokenizer, arch = get_tts_model(lang)
inputs = tokenizer(text, return_tensors="pt")
with torch.no_grad():
output = model(**inputs)
# VitsModel output is typically provided via .waveform attribute
if hasattr(output, "waveform"):
waveform_tensor = output.waveform
else:
raise RuntimeError("TTS model output does not contain 'waveform'.")
waveform = waveform_tensor.squeeze().cpu().numpy()
sample_rate = 16000 # Typically used sample rate for these models
return (sample_rate, waveform)
# ------------------------------------------------------
# 8. Prediction Function
# ------------------------------------------------------
def predict(audio, text, target_language):
"""
1. Obtain English text (via ASR using Whisper-small or text input).
2. Translate English text to the target language.
3. Synthesize speech with the target language TTS model.
"""
# Step 1: Get English text
if text.strip():
english_text = text.strip()
elif audio is not None:
sample_rate, audio_data = audio
# Ensure float32 data type
if audio_data.dtype not in [np.float32, np.float64]:
audio_data = audio_data.astype(np.float32)
# Convert stereo to mono if necessary
if len(audio_data.shape) > 1 and audio_data.shape[1] > 1:
audio_data = np.mean(audio_data, axis=1)
# Resample to 16kHz if necessary
if sample_rate != 16000:
audio_data = librosa.resample(audio_data, orig_sr=sample_rate, target_sr=16000)
asr_input = {"array": audio_data, "sampling_rate": 16000}
asr_result = asr(asr_input)
english_text = asr_result["text"]
else:
return "No input provided.", "", None
# Step 2: Translation
translator = get_translator(target_language)
try:
translation_result = translator(english_text)
translated_text = translation_result[0]["translation_text"]
except Exception as e:
return english_text, f"Translation error: {e}", None
# Step 3: TTS
try:
sample_rate, waveform = run_tts_inference(target_language, translated_text)
except Exception as e:
return english_text, translated_text, f"TTS error: {e}"
return english_text, translated_text, (sample_rate, waveform)
# ------------------------------------------------------
# 9. Gradio Interface
# ------------------------------------------------------
iface = gr.Interface(
fn=predict,
inputs=[
gr.Audio(type="numpy", label="Record/Upload English Audio (optional)"),
gr.Textbox(lines=4, placeholder="Or enter English text here", label="English Text Input (optional)"),
gr.Dropdown(choices=["Spanish", "Chinese", "Japanese"], value="Spanish", label="Target Language")
],
outputs=[
gr.Textbox(label="English Transcription"),
gr.Textbox(label="Translation (Target Language)"),
gr.Audio(label="Synthesized Speech")
],
title="Multimodal Language Learning Aid (ASR / TTS)",
description=(
"This app:\n"
"1. Transcribes English speech or English text.\n"
"2. Translates to Spanish, Chinese, or Japanese (using Helsinki-NLP models).\n"
"3. Provides synthetic speech with TTS models:\n"
),
allow_flagging="never"
)
if __name__ == "__main__":
iface.launch(server_name="0.0.0.0", server_port=7860)
|