File size: 8,332 Bytes
63ee3e5 178dac1 63ee3e5 e2fc711 178dac1 e2fc711 63ee3e5 5fb2e7c 63ee3e5 e2fc711 d744aff e2fc711 63ee3e5 c098e72 63ee3e5 c7f56a8 c098e72 c7f56a8 e2fc711 178dac1 e2fc711 178dac1 cc8959c 178dac1 cc8959c 178dac1 cc8959c 63ee3e5 178dac1 e2fc711 178dac1 e2fc711 63ee3e5 178dac1 63ee3e5 d744aff cc8959c d744aff c7f56a8 d744aff 63ee3e5 178dac1 cc8959c d744aff 178dac1 d744aff 178dac1 d744aff c7f56a8 178dac1 cc8959c 178dac1 63ee3e5 178dac1 d744aff 178dac1 d744aff cc8959c d744aff 5fb2e7c 178dac1 cc8959c 5fb2e7c cc8959c 178dac1 cc8959c 178dac1 cc8959c 178dac1 d744aff e2fc711 178dac1 e2fc711 63ee3e5 d744aff cc8959c 178dac1 d744aff 5fb2e7c c7f56a8 63ee3e5 d744aff 5fb2e7c 63ee3e5 d744aff cc8959c 63ee3e5 d744aff 5fb2e7c 63ee3e5 d744aff 63ee3e5 5fb2e7c 63ee3e5 c7f56a8 16d930f c7f56a8 178dac1 cc8959c 178dac1 c7f56a8 63ee3e5 cc8959c 63ee3e5 e2fc711 178dac1 e2fc711 63ee3e5 178dac1 63ee3e5 16d930f 63ee3e5 5fb2e7c 63ee3e5 178dac1 cc8959c 178dac1 63ee3e5 178dac1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 |
import gradio as gr
import torch
import numpy as np
import librosa
import soundfile as sf
import tempfile
import os
from transformers import (
pipeline,
VitsModel,
AutoTokenizer
)
# For Coqui TTS
try:
from TTS.api import TTS as CoquiTTS
except ImportError:
raise ImportError("Please install Coqui TTS via `pip install TTS`.")
# ------------------------------------------------------
# 1. ASR Pipeline (English) using Wav2Vec2
# ------------------------------------------------------
asr = pipeline(
"automatic-speech-recognition",
model="facebook/wav2vec2-base-960h"
)
# ------------------------------------------------------
# 2. Translation Models (3 languages)
# ------------------------------------------------------
translation_models = {
"Spanish": "Helsinki-NLP/opus-mt-en-es",
"Chinese": "Helsinki-NLP/opus-mt-en-zh",
"Japanese": "Helsinki-NLP/opus-mt-en-ja"
}
translation_tasks = {
"Spanish": "translation_en_to_es",
"Chinese": "translation_en_to_zh",
"Japanese": "translation_en_to_ja"
}
# ------------------------------------------------------
# 3. TTS Config:
# - Spanish: MMS TTS (facebook/mms-tts-spa)
# - Chinese, Japanese: Coqui XTTS-v2 (tts_models/multilingual/multi-dataset/xtts_v2)
# ------------------------------------------------------
SPANISH = "Spanish"
CHINESE = "Chinese"
JAPANESE = "Japanese"
# For Spanish (MMS)
mms_spanish_config = {
"model_id": "facebook/mms-tts-spa",
"architecture": "vits"
}
# We'll map Chinese/Japanese to Coqui language codes
coqui_lang_map = {
CHINESE: "zh",
JAPANESE: "ja"
}
# ------------------------------------------------------
# 4. Global Caches
# ------------------------------------------------------
translator_cache = {}
spanish_vits_cache = None
coqui_tts_cache = None
def get_translator(lang):
"""
Return a cached MarianMT translator for the specified language.
"""
if lang in translator_cache:
return translator_cache[lang]
model_name = translation_models[lang]
task_name = translation_tasks[lang]
translator = pipeline(task_name, model=model_name)
translator_cache[lang] = translator
return translator
# ------------------------------------------------------
# 5. Spanish TTS: MMS (VITS)
# ------------------------------------------------------
def load_spanish_vits():
"""
Load and cache the Spanish MMS TTS model (VITS).
"""
global spanish_vits_cache
if spanish_vits_cache is not None:
return spanish_vits_cache
try:
model = VitsModel.from_pretrained(mms_spanish_config["model_id"])
tokenizer = AutoTokenizer.from_pretrained(mms_spanish_config["model_id"])
spanish_vits_cache = (model, tokenizer)
except Exception as e:
raise RuntimeError(f"Failed to load Spanish TTS model {mms_spanish_config['model_id']}: {e}")
return spanish_vits_cache
def run_spanish_tts(text):
"""
Run MMS TTS (VITS) for Spanish text.
Returns (sample_rate, waveform).
"""
model, tokenizer = load_spanish_vits()
inputs = tokenizer(text, return_tensors="pt")
with torch.no_grad():
output = model(**inputs)
if not hasattr(output, "waveform"):
raise RuntimeError("Spanish TTS model output does not contain 'waveform'.")
waveform = output.waveform.squeeze().cpu().numpy()
sample_rate = 16000
return sample_rate, waveform
# ------------------------------------------------------
# 6. Chinese/Japanese TTS: Coqui XTTS-v2
# ------------------------------------------------------
def load_coqui_tts():
"""
Load and cache the Coqui XTTS-v2 model (multilingual).
"""
global coqui_tts_cache
if coqui_tts_cache is not None:
return coqui_tts_cache
try:
# If you have a GPU on HF Spaces, you can set gpu=True.
# If not, set gpu=False to run on CPU (slower).
coqui_tts_cache = CoquiTTS("tts_models/multilingual/multi-dataset/xtts_v2", gpu=False)
except Exception as e:
raise RuntimeError("Failed to load Coqui XTTS-v2 TTS: %s" % e)
return coqui_tts_cache
def run_coqui_tts(text, lang):
"""
Run Coqui TTS for Chinese or Japanese text.
We specify the language code from coqui_lang_map.
Returns (sample_rate, waveform).
"""
coqui_tts = load_coqui_tts()
lang_code = coqui_lang_map[lang] # "zh" or "ja"
# We must output to a file, then read it back.
# Use a temporary file to store the wave.
with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as tmp:
tmp_name = tmp.name
try:
coqui_tts.tts_to_file(
text=text,
file_path=tmp_name,
language=lang_code # no speaker_wav, default voice
)
data, sr = sf.read(tmp_name)
finally:
# Cleanup the temporary file
if os.path.exists(tmp_name):
os.remove(tmp_name)
return sr, data
# ------------------------------------------------------
# 7. Main Prediction Function
# ------------------------------------------------------
def predict(audio, text, target_language):
"""
1. Get English text (ASR if audio provided, else text).
2. Translate to target_language.
3. TTS with the chosen approach:
- Spanish -> MMS TTS (VITS)
- Chinese/Japanese -> Coqui XTTS-v2
"""
# Step 1: English text
if text.strip():
english_text = text.strip()
elif audio is not None:
sample_rate, audio_data = audio
# Convert to float32 if needed
if audio_data.dtype not in [np.float32, np.float64]:
audio_data = audio_data.astype(np.float32)
# Stereo -> mono
if len(audio_data.shape) > 1 and audio_data.shape[1] > 1:
audio_data = np.mean(audio_data, axis=1)
# Resample to 16k if needed
if sample_rate != 16000:
audio_data = librosa.resample(audio_data, orig_sr=sample_rate, target_sr=16000)
asr_input = {"array": audio_data, "sampling_rate": 16000}
asr_result = asr(asr_input)
english_text = asr_result["text"]
else:
return "No input provided.", "", None
# Step 2: Translate
translator = get_translator(target_language)
try:
translation_result = translator(english_text)
translated_text = translation_result[0]["translation_text"]
except Exception as e:
return english_text, f"Translation error: {e}", None
# Step 3: TTS
try:
if target_language == SPANISH:
sr, waveform = run_spanish_tts(translated_text)
else:
# Chinese or Japanese
sr, waveform = run_coqui_tts(translated_text, target_language)
except Exception as e:
return english_text, translated_text, f"TTS error: {e}"
return english_text, translated_text, (sr, waveform)
# ------------------------------------------------------
# 8. Gradio Interface
# ------------------------------------------------------
iface = gr.Interface(
fn=predict,
inputs=[
gr.Audio(type="numpy", label="Record/Upload English Audio (optional)"),
gr.Textbox(lines=4, placeholder="Or enter English text here", label="English Text Input (optional)"),
gr.Dropdown(choices=[SPANISH, CHINESE, JAPANESE], value=SPANISH, label="Target Language")
],
outputs=[
gr.Textbox(label="English Transcription"),
gr.Textbox(label="Translation (Target Language)"),
gr.Audio(label="Synthesized Speech")
],
title="Multimodal Language Learning Aid",
description=(
"1. Transcribes English speech using Wav2Vec2 (or takes English text).\n"
"2. Translates to Spanish, Chinese, or Japanese (via Helsinki-NLP).\n"
"3. Synthesizes speech:\n"
" - Spanish -> facebook/mms-tts-spa (VITS)\n"
" - Chinese & Japanese -> Coqui XTTS-v2 (multilingual TTS)\n\n"
"Note: The Coqui model is 'tts_models/multilingual/multi-dataset/xtts_v2' and expects language codes.\n"
"If you need voice cloning, set `speaker_wav` in `tts_to_file()`. By default, it uses a single generic voice."
),
allow_flagging="never"
)
if __name__ == "__main__":
iface.launch(server_name="0.0.0.0", server_port=7860)
|