File size: 8,332 Bytes
63ee3e5
 
 
 
178dac1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
63ee3e5
e2fc711
178dac1
e2fc711
63ee3e5
 
5fb2e7c
63ee3e5
 
e2fc711
d744aff
e2fc711
63ee3e5
 
 
c098e72
63ee3e5
 
c7f56a8
 
 
c098e72
c7f56a8
 
e2fc711
178dac1
 
 
e2fc711
178dac1
 
 
cc8959c
178dac1
cc8959c
178dac1
cc8959c
63ee3e5
 
178dac1
 
 
 
 
 
e2fc711
178dac1
e2fc711
63ee3e5
178dac1
 
63ee3e5
d744aff
cc8959c
 
 
d744aff
 
 
 
c7f56a8
d744aff
63ee3e5
 
178dac1
 
 
cc8959c
d744aff
178dac1
d744aff
178dac1
 
 
d744aff
c7f56a8
178dac1
 
 
cc8959c
 
 
178dac1
63ee3e5
178dac1
d744aff
178dac1
 
d744aff
cc8959c
d744aff
 
 
5fb2e7c
178dac1
cc8959c
5fb2e7c
cc8959c
 
178dac1
 
 
 
cc8959c
178dac1
cc8959c
178dac1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d744aff
e2fc711
178dac1
e2fc711
63ee3e5
d744aff
cc8959c
 
178dac1
 
 
d744aff
5fb2e7c
c7f56a8
63ee3e5
 
 
d744aff
5fb2e7c
63ee3e5
 
d744aff
cc8959c
63ee3e5
 
d744aff
5fb2e7c
63ee3e5
 
d744aff
 
 
63ee3e5
 
 
 
5fb2e7c
63ee3e5
c7f56a8
 
 
 
 
 
16d930f
c7f56a8
178dac1
 
cc8959c
178dac1
 
c7f56a8
 
63ee3e5
cc8959c
63ee3e5
e2fc711
178dac1
e2fc711
63ee3e5
 
 
 
 
178dac1
63ee3e5
 
 
 
16d930f
63ee3e5
5fb2e7c
63ee3e5
178dac1
 
 
cc8959c
178dac1
 
 
63ee3e5
 
 
 
 
178dac1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
import gradio as gr
import torch
import numpy as np
import librosa
import soundfile as sf
import tempfile
import os

from transformers import (
    pipeline, 
    VitsModel, 
    AutoTokenizer
)

# For Coqui TTS
try:
    from TTS.api import TTS as CoquiTTS
except ImportError:
    raise ImportError("Please install Coqui TTS via `pip install TTS`.")

# ------------------------------------------------------
# 1. ASR Pipeline (English) using Wav2Vec2
# ------------------------------------------------------
asr = pipeline(
    "automatic-speech-recognition",
    model="facebook/wav2vec2-base-960h"
)

# ------------------------------------------------------
# 2. Translation Models (3 languages)
# ------------------------------------------------------
translation_models = {
    "Spanish": "Helsinki-NLP/opus-mt-en-es",
    "Chinese": "Helsinki-NLP/opus-mt-en-zh",
    "Japanese": "Helsinki-NLP/opus-mt-en-ja"
}

translation_tasks = {
    "Spanish": "translation_en_to_es",
    "Chinese": "translation_en_to_zh",
    "Japanese": "translation_en_to_ja"
}

# ------------------------------------------------------
# 3. TTS Config:
#    - Spanish: MMS TTS (facebook/mms-tts-spa)
#    - Chinese, Japanese: Coqui XTTS-v2 (tts_models/multilingual/multi-dataset/xtts_v2)
# ------------------------------------------------------
SPANISH = "Spanish"
CHINESE = "Chinese"
JAPANESE = "Japanese"

# For Spanish (MMS)
mms_spanish_config = {
    "model_id": "facebook/mms-tts-spa", 
    "architecture": "vits"
}

# We'll map Chinese/Japanese to Coqui language codes
coqui_lang_map = {
    CHINESE: "zh",
    JAPANESE: "ja"
}

# ------------------------------------------------------
# 4. Global Caches
# ------------------------------------------------------
translator_cache = {}
spanish_vits_cache = None
coqui_tts_cache = None

def get_translator(lang):
    """
    Return a cached MarianMT translator for the specified language.
    """
    if lang in translator_cache:
        return translator_cache[lang]
    model_name = translation_models[lang]
    task_name = translation_tasks[lang]
    translator = pipeline(task_name, model=model_name)
    translator_cache[lang] = translator
    return translator

# ------------------------------------------------------
# 5. Spanish TTS: MMS (VITS)
# ------------------------------------------------------
def load_spanish_vits():
    """
    Load and cache the Spanish MMS TTS model (VITS).
    """
    global spanish_vits_cache
    if spanish_vits_cache is not None:
        return spanish_vits_cache
    
    try:
        model = VitsModel.from_pretrained(mms_spanish_config["model_id"])
        tokenizer = AutoTokenizer.from_pretrained(mms_spanish_config["model_id"])
        spanish_vits_cache = (model, tokenizer)
    except Exception as e:
        raise RuntimeError(f"Failed to load Spanish TTS model {mms_spanish_config['model_id']}: {e}")
    
    return spanish_vits_cache

def run_spanish_tts(text):
    """
    Run MMS TTS (VITS) for Spanish text.
    Returns (sample_rate, waveform).
    """
    model, tokenizer = load_spanish_vits()
    inputs = tokenizer(text, return_tensors="pt")
    with torch.no_grad():
        output = model(**inputs)
    if not hasattr(output, "waveform"):
        raise RuntimeError("Spanish TTS model output does not contain 'waveform'.")
    waveform = output.waveform.squeeze().cpu().numpy()
    sample_rate = 16000
    return sample_rate, waveform

# ------------------------------------------------------
# 6. Chinese/Japanese TTS: Coqui XTTS-v2
# ------------------------------------------------------
def load_coqui_tts():
    """
    Load and cache the Coqui XTTS-v2 model (multilingual).
    """
    global coqui_tts_cache
    if coqui_tts_cache is not None:
        return coqui_tts_cache
    
    try:
        # If you have a GPU on HF Spaces, you can set gpu=True. 
        # If not, set gpu=False to run on CPU (slower).
        coqui_tts_cache = CoquiTTS("tts_models/multilingual/multi-dataset/xtts_v2", gpu=False)
    except Exception as e:
        raise RuntimeError("Failed to load Coqui XTTS-v2 TTS: %s" % e)
    
    return coqui_tts_cache

def run_coqui_tts(text, lang):
    """
    Run Coqui TTS for Chinese or Japanese text.
    We specify the language code from coqui_lang_map. 
    Returns (sample_rate, waveform).
    """
    coqui_tts = load_coqui_tts()
    lang_code = coqui_lang_map[lang]  # "zh" or "ja"
    
    # We must output to a file, then read it back. 
    # Use a temporary file to store the wave.
    with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as tmp:
        tmp_name = tmp.name
    
    try:
        coqui_tts.tts_to_file(
            text=text,
            file_path=tmp_name,
            language=lang_code  # no speaker_wav, default voice
        )
        data, sr = sf.read(tmp_name)
    finally:
        # Cleanup the temporary file
        if os.path.exists(tmp_name):
            os.remove(tmp_name)
    
    return sr, data

# ------------------------------------------------------
# 7. Main Prediction Function
# ------------------------------------------------------
def predict(audio, text, target_language):
    """
    1. Get English text (ASR if audio provided, else text).
    2. Translate to target_language.
    3. TTS with the chosen approach:
       - Spanish -> MMS TTS (VITS)
       - Chinese/Japanese -> Coqui XTTS-v2
    """
    # Step 1: English text
    if text.strip():
        english_text = text.strip()
    elif audio is not None:
        sample_rate, audio_data = audio
        
        # Convert to float32 if needed
        if audio_data.dtype not in [np.float32, np.float64]:
            audio_data = audio_data.astype(np.float32)
        
        # Stereo -> mono
        if len(audio_data.shape) > 1 and audio_data.shape[1] > 1:
            audio_data = np.mean(audio_data, axis=1)
        
        # Resample to 16k if needed
        if sample_rate != 16000:
            audio_data = librosa.resample(audio_data, orig_sr=sample_rate, target_sr=16000)
        
        asr_input = {"array": audio_data, "sampling_rate": 16000}
        asr_result = asr(asr_input)
        english_text = asr_result["text"]
    else:
        return "No input provided.", "", None

    # Step 2: Translate
    translator = get_translator(target_language)
    try:
        translation_result = translator(english_text)
        translated_text = translation_result[0]["translation_text"]
    except Exception as e:
        return english_text, f"Translation error: {e}", None

    # Step 3: TTS
    try:
        if target_language == SPANISH:
            sr, waveform = run_spanish_tts(translated_text)
        else:
            # Chinese or Japanese
            sr, waveform = run_coqui_tts(translated_text, target_language)
    except Exception as e:
        return english_text, translated_text, f"TTS error: {e}"

    return english_text, translated_text, (sr, waveform)

# ------------------------------------------------------
# 8. Gradio Interface
# ------------------------------------------------------
iface = gr.Interface(
    fn=predict,
    inputs=[
        gr.Audio(type="numpy", label="Record/Upload English Audio (optional)"),
        gr.Textbox(lines=4, placeholder="Or enter English text here", label="English Text Input (optional)"),
        gr.Dropdown(choices=[SPANISH, CHINESE, JAPANESE], value=SPANISH, label="Target Language")
    ],
    outputs=[
        gr.Textbox(label="English Transcription"),
        gr.Textbox(label="Translation (Target Language)"),
        gr.Audio(label="Synthesized Speech")
    ],
    title="Multimodal Language Learning Aid",
    description=(
        "1. Transcribes English speech using Wav2Vec2 (or takes English text).\n"
        "2. Translates to Spanish, Chinese, or Japanese (via Helsinki-NLP).\n"
        "3. Synthesizes speech:\n"
        "   - Spanish -> facebook/mms-tts-spa (VITS)\n"
        "   - Chinese & Japanese -> Coqui XTTS-v2 (multilingual TTS)\n\n"
        "Note: The Coqui model is 'tts_models/multilingual/multi-dataset/xtts_v2' and expects language codes.\n"
        "If you need voice cloning, set `speaker_wav` in `tts_to_file()`. By default, it uses a single generic voice."
    ),
    allow_flagging="never"
)

if __name__ == "__main__":
    iface.launch(server_name="0.0.0.0", server_port=7860)