File size: 4,939 Bytes
63ee3e5
 
 
 
 
 
 
 
 
 
 
35bcda1
63ee3e5
 
 
c098e72
63ee3e5
 
 
 
c098e72
63ee3e5
 
c7f56a8
 
 
c098e72
c7f56a8
 
63ee3e5
be4098e
 
c098e72
63ee3e5
 
c7f56a8
63ee3e5
c7f56a8
63ee3e5
 
 
 
 
 
 
c7f56a8
 
63ee3e5
 
 
 
 
 
c7f56a8
 
 
 
 
 
c098e72
c7f56a8
 
63ee3e5
 
 
 
 
c098e72
c7f56a8
63ee3e5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c098e72
63ee3e5
c7f56a8
 
 
 
 
 
c098e72
c7f56a8
 
 
 
 
 
63ee3e5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
be4098e
63ee3e5
c098e72
be4098e
 
63ee3e5
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
import gradio as gr
import torch
import numpy as np
import librosa
from transformers import pipeline

# --------------------------------------------------
# ASR Pipeline (for English transcription)
# --------------------------------------------------
asr = pipeline(
    "automatic-speech-recognition",
    model="facebook/wav2vec2-base-960h"
)

# --------------------------------------------------
# Mapping for Target Languages (Spanish, Chinese, Japanese)
# --------------------------------------------------
translation_models = {
    "Spanish": "Helsinki-NLP/opus-mt-en-es",
    "Chinese": "Helsinki-NLP/opus-mt-en-zh",
    "Japanese": "Helsinki-NLP/opus-mt-en-ja"
}

translation_tasks = {
    "Spanish": "translation_en_to_es",
    "Chinese": "translation_en_to_zh",
    "Japanese": "translation_en_to_ja"
}

tts_models = {
    "Spanish": "facebook/mms-tts-spa",
    "Chinese": "facebook/mms-tts-che",     
    "Japanese": "esnya/japanese_speecht5_tts"
}

# --------------------------------------------------
# Caches for translator and TTS pipelines
# --------------------------------------------------
translator_cache = {}
tts_cache = {}

def get_translator(target_language):
    if target_language in translator_cache:
        return translator_cache[target_language]
    model_name = translation_models[target_language]
    task_name = translation_tasks[target_language]
    translator = pipeline(task_name, model=model_name)
    translator_cache[target_language] = translator
    return translator

def get_tts(target_language):
    if target_language in tts_cache:
        return tts_cache[target_language]
    model_name = tts_models.get(target_language)
    if model_name is None:
        raise ValueError(f"No TTS model available for {target_language}.")
    try:
        tts_pipeline = pipeline("text-to-speech", model=model_name)
    except Exception as e:
        raise ValueError(f"Failed to load TTS model for {target_language} with model '{model_name}'.\nError: {e}")
    tts_cache[target_language] = tts_pipeline
    return tts_pipeline

# --------------------------------------------------
# Prediction Function
# --------------------------------------------------
def predict(audio, text, target_language):
    # Step 1: Obtain English text from text input if provided, otherwise use ASR.
    if text.strip():
        english_text = text.strip()
    elif audio is not None:
        sample_rate, audio_data = audio
        if audio_data.dtype not in [np.float32, np.float64]:
            audio_data = audio_data.astype(np.float32)
        if len(audio_data.shape) > 1 and audio_data.shape[1] > 1:
            audio_data = np.mean(audio_data, axis=1)
        if sample_rate != 16000:
            audio_data = librosa.resample(audio_data, orig_sr=sample_rate, target_sr=16000)
        input_audio = {"array": audio_data, "sampling_rate": 16000}
        asr_result = asr(input_audio)
        english_text = asr_result["text"]
    else:
        return "No input provided.", "", None

    # Step 2: Translate the English text to the target language.
    translator = get_translator(target_language)
    try:
        translation_result = translator(english_text)
        translated_text = translation_result[0]["translation_text"]
    except Exception as e:
        return english_text, f"Translation error: {e}", None

    # Step 3: Synthesize speech using the TTS pipeline.
    try:
        tts_pipeline = get_tts(target_language)
        tts_result = tts_pipeline(translated_text)
        synthesized_audio = (tts_result["sample_rate"], tts_result["wav"])
    except Exception as e:
        return english_text, translated_text, f"TTS error: {e}"

    return english_text, translated_text, synthesized_audio

# --------------------------------------------------
# Gradio Interface Setup
# --------------------------------------------------
iface = gr.Interface(
    fn=predict,
    inputs=[
        gr.Audio(type="numpy", label="Record/Upload English Audio (optional)"),
        gr.Textbox(lines=4, placeholder="Or enter English text here", label="English Text Input (optional)"),
        gr.Dropdown(choices=list(translation_models.keys()), value="Spanish", label="Target Language")
    ],
    outputs=[
        gr.Textbox(label="English Transcription"),
        gr.Textbox(label="Translation (Target Language)"),
        gr.Audio(label="Synthesized Speech in Target Language")
    ],
    title="Multimodal Language Learning Aid",
    description=(
        "This app provides three outputs:\n"
        "1. English transcription (from ASR or text input),\n"
        "2. Translation to Spanish, Chinese, or Japanese (using Helsinki-NLP models), and\n"
        "3. Synthetic speech in the target language (using Facebook MMS TTS or equivalent).\n\n"
        "Either record/upload an English audio sample or enter English text directly."
    ),
    allow_flagging="never"
)

if __name__ == "__main__":
    iface.launch()