File size: 4,939 Bytes
63ee3e5 35bcda1 63ee3e5 c098e72 63ee3e5 c098e72 63ee3e5 c7f56a8 c098e72 c7f56a8 63ee3e5 be4098e c098e72 63ee3e5 c7f56a8 63ee3e5 c7f56a8 63ee3e5 c7f56a8 63ee3e5 c7f56a8 c098e72 c7f56a8 63ee3e5 c098e72 c7f56a8 63ee3e5 c098e72 63ee3e5 c7f56a8 c098e72 c7f56a8 63ee3e5 be4098e 63ee3e5 c098e72 be4098e 63ee3e5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 |
import gradio as gr
import torch
import numpy as np
import librosa
from transformers import pipeline
# --------------------------------------------------
# ASR Pipeline (for English transcription)
# --------------------------------------------------
asr = pipeline(
"automatic-speech-recognition",
model="facebook/wav2vec2-base-960h"
)
# --------------------------------------------------
# Mapping for Target Languages (Spanish, Chinese, Japanese)
# --------------------------------------------------
translation_models = {
"Spanish": "Helsinki-NLP/opus-mt-en-es",
"Chinese": "Helsinki-NLP/opus-mt-en-zh",
"Japanese": "Helsinki-NLP/opus-mt-en-ja"
}
translation_tasks = {
"Spanish": "translation_en_to_es",
"Chinese": "translation_en_to_zh",
"Japanese": "translation_en_to_ja"
}
tts_models = {
"Spanish": "facebook/mms-tts-spa",
"Chinese": "facebook/mms-tts-che",
"Japanese": "esnya/japanese_speecht5_tts"
}
# --------------------------------------------------
# Caches for translator and TTS pipelines
# --------------------------------------------------
translator_cache = {}
tts_cache = {}
def get_translator(target_language):
if target_language in translator_cache:
return translator_cache[target_language]
model_name = translation_models[target_language]
task_name = translation_tasks[target_language]
translator = pipeline(task_name, model=model_name)
translator_cache[target_language] = translator
return translator
def get_tts(target_language):
if target_language in tts_cache:
return tts_cache[target_language]
model_name = tts_models.get(target_language)
if model_name is None:
raise ValueError(f"No TTS model available for {target_language}.")
try:
tts_pipeline = pipeline("text-to-speech", model=model_name)
except Exception as e:
raise ValueError(f"Failed to load TTS model for {target_language} with model '{model_name}'.\nError: {e}")
tts_cache[target_language] = tts_pipeline
return tts_pipeline
# --------------------------------------------------
# Prediction Function
# --------------------------------------------------
def predict(audio, text, target_language):
# Step 1: Obtain English text from text input if provided, otherwise use ASR.
if text.strip():
english_text = text.strip()
elif audio is not None:
sample_rate, audio_data = audio
if audio_data.dtype not in [np.float32, np.float64]:
audio_data = audio_data.astype(np.float32)
if len(audio_data.shape) > 1 and audio_data.shape[1] > 1:
audio_data = np.mean(audio_data, axis=1)
if sample_rate != 16000:
audio_data = librosa.resample(audio_data, orig_sr=sample_rate, target_sr=16000)
input_audio = {"array": audio_data, "sampling_rate": 16000}
asr_result = asr(input_audio)
english_text = asr_result["text"]
else:
return "No input provided.", "", None
# Step 2: Translate the English text to the target language.
translator = get_translator(target_language)
try:
translation_result = translator(english_text)
translated_text = translation_result[0]["translation_text"]
except Exception as e:
return english_text, f"Translation error: {e}", None
# Step 3: Synthesize speech using the TTS pipeline.
try:
tts_pipeline = get_tts(target_language)
tts_result = tts_pipeline(translated_text)
synthesized_audio = (tts_result["sample_rate"], tts_result["wav"])
except Exception as e:
return english_text, translated_text, f"TTS error: {e}"
return english_text, translated_text, synthesized_audio
# --------------------------------------------------
# Gradio Interface Setup
# --------------------------------------------------
iface = gr.Interface(
fn=predict,
inputs=[
gr.Audio(type="numpy", label="Record/Upload English Audio (optional)"),
gr.Textbox(lines=4, placeholder="Or enter English text here", label="English Text Input (optional)"),
gr.Dropdown(choices=list(translation_models.keys()), value="Spanish", label="Target Language")
],
outputs=[
gr.Textbox(label="English Transcription"),
gr.Textbox(label="Translation (Target Language)"),
gr.Audio(label="Synthesized Speech in Target Language")
],
title="Multimodal Language Learning Aid",
description=(
"This app provides three outputs:\n"
"1. English transcription (from ASR or text input),\n"
"2. Translation to Spanish, Chinese, or Japanese (using Helsinki-NLP models), and\n"
"3. Synthetic speech in the target language (using Facebook MMS TTS or equivalent).\n\n"
"Either record/upload an English audio sample or enter English text directly."
),
allow_flagging="never"
)
if __name__ == "__main__":
iface.launch()
|