File size: 8,918 Bytes
63ee3e5
 
 
 
178dac1
 
 
 
a3f86f5
 
178dac1
e947b77
178dac1
e947b77
178dac1
e947b77
63ee3e5
e2fc711
178dac1
e2fc711
63ee3e5
 
5fb2e7c
63ee3e5
 
e2fc711
a3f86f5
e2fc711
63ee3e5
 
a3f86f5
 
604a1f2
 
 
63ee3e5
604a1f2
63ee3e5
 
c7f56a8
 
a3f86f5
 
 
 
 
c7f56a8
c098e72
c7f56a8
 
e2fc711
a3f86f5
 
e947b77
e2fc711
a3f86f5
 
 
 
 
 
 
e947b77
 
178dac1
 
e2fc711
a3f86f5
e2fc711
63ee3e5
a3f86f5
e947b77
63ee3e5
a3f86f5
 
 
d744aff
 
 
 
 
c7f56a8
d744aff
63ee3e5
 
178dac1
a3f86f5
178dac1
a3f86f5
 
 
 
c7f56a8
a3f86f5
 
 
cc8959c
a3f86f5
 
63ee3e5
a3f86f5
 
d744aff
 
 
5fb2e7c
a3f86f5
cc8959c
5fb2e7c
cc8959c
 
178dac1
e947b77
178dac1
e947b77
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
178dac1
 
 
e947b77
178dac1
 
 
 
 
d744aff
e2fc711
a3f86f5
e2fc711
63ee3e5
d744aff
a3f86f5
e947b77
 
d744aff
a3f86f5
c7f56a8
63ee3e5
 
 
 
 
 
 
 
 
d744aff
 
63ee3e5
 
 
 
a3f86f5
63ee3e5
c7f56a8
 
 
 
 
 
a3f86f5
c7f56a8
a3f86f5
 
 
e947b77
 
a3f86f5
 
c7f56a8
 
63ee3e5
cc8959c
63ee3e5
e2fc711
a3f86f5
e2fc711
a3f86f5
 
 
 
63ee3e5
 
 
 
 
a3f86f5
63ee3e5
 
 
 
16d930f
63ee3e5
5fb2e7c
63ee3e5
a3f86f5
 
e947b77
 
 
 
 
63ee3e5
 
 
 
 
e947b77
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
import gradio as gr
import torch
import numpy as np
import librosa
import soundfile as sf
import tempfile
import os

from transformers import pipeline, VitsModel, AutoTokenizer
from datasets import load_dataset

# For MeloTTS (Chinese and Japanese)
try:
    from melo.api import TTS as MeloTTS
except ImportError:
    raise ImportError("Please install the MeloTTS package (e.g., pip install myshell-ai/MeloTTS-Chinese)")

# ------------------------------------------------------
# 1. ASR Pipeline (English) using Wav2Vec2
# ------------------------------------------------------
asr = pipeline(
    "automatic-speech-recognition",
    model="facebook/wav2vec2-base-960h"
)

# ------------------------------------------------------
# 2. Translation Models (8 languages)
# ------------------------------------------------------
translation_models = {
    "Spanish": "Helsinki-NLP/opus-mt-en-es",
    "Vietnamese": "Helsinki-NLP/opus-mt-en-vi",
    "Indonesian": "Helsinki-NLP/opus-mt-en-id",
    "Turkish": "Helsinki-NLP/opus-mt-en-trk",
    "Portuguese": "Helsinki-NLP/opus-mt-tc-big-en-pt",
    "Korean": "Helsinki-NLP/opus-mt-tc-big-en-ko",
    "Chinese": "Helsinki-NLP/opus-mt-en-zh",
    "Japanese": "Helsinki-NLP/opus-mt-en-jap"
}

translation_tasks = {
    "Spanish": "translation_en_to_es",
    "Vietnamese": "translation_en_to_vi",
    "Indonesian": "translation_en_to_id",
    "Turkish": "translation_en_to_tr",
    "Portuguese": "translation_en_to_pt",
    "Korean": "translation_en_to-ko",
    "Chinese": "translation_en_to_zh",
    "Japanese": "translation_en_to_ja"
}

# ------------------------------------------------------
# 3. TTS Configuration
#    - MMS TTS (VITS) for: Spanish, Vietnamese, Indonesian, Turkish, Portuguese, Korean
#    - MeloTTS for: Chinese and Japanese
# ------------------------------------------------------
tts_config = {
    "Spanish": {"model_id": "facebook/mms-tts-spa", "architecture": "vits", "type": "mms"},
    "Vietnamese": {"model_id": "facebook/mms-tts-vie", "architecture": "vits", "type": "mms"},
    "Indonesian": {"model_id": "facebook/mms-tts-ind", "architecture": "vits", "type": "mms"},
    "Turkish": {"model_id": "facebook/mms-tts-tur", "architecture": "vits", "type": "mms"},
    "Portuguese": {"model_id": "facebook/mms-tts-por", "architecture": "vits", "type": "mms"},
    "Korean": {"model_id": "facebook/mms-tts-kor", "architecture": "vits", "type": "mms"},
    "Chinese": {"type": "melo"},
    "Japanese": {"type": "melo"}
}

# ------------------------------------------------------
# 4. Global Caches for Translators and TTS Models
# ------------------------------------------------------
translator_cache = {}
mms_tts_cache = {}     # For MMS (VITS-based) TTS models
melo_tts_cache = {}    # For MeloTTS models (Chinese/Japanese)

# ------------------------------------------------------
# 5. Translator Helper
# ------------------------------------------------------
def get_translator(lang):
    if lang in translator_cache:
        return translator_cache[lang]
    model_name = translation_models[lang]
    task_name = translation_tasks[lang]
    translator = pipeline(task_name, model=model_name)
    translator_cache[lang] = translator
    return translator

# ------------------------------------------------------
# 6. MMS TTS (VITS) Helper for languages using MMS TTS
# ------------------------------------------------------
def load_mms_tts(lang):
    if lang in mms_tts_cache:
        return mms_tts_cache[lang]
    config = tts_config[lang]
    try:
        model = VitsModel.from_pretrained(config["model_id"])
        tokenizer = AutoTokenizer.from_pretrained(config["model_id"])
        mms_tts_cache[lang] = (model, tokenizer)
    except Exception as e:
        raise RuntimeError(f"Failed to load MMS TTS model for {lang} ({config['model_id']}): {e}")
    return mms_tts_cache[lang]

def run_mms_tts(text, lang):
    model, tokenizer = load_mms_tts(lang)
    inputs = tokenizer(text, return_tensors="pt")
    with torch.no_grad():
        output = model(**inputs)
    if not hasattr(output, "waveform"):
        raise RuntimeError(f"MMS TTS model output for {lang} does not contain 'waveform'.")
    waveform = output.waveform.squeeze().cpu().numpy()
    sample_rate = 16000
    return sample_rate, waveform

# ------------------------------------------------------
# 7. MeloTTS Helper for Chinese and Japanese
# ------------------------------------------------------
def run_melo_tts(text, lang):
    """
    Uses the myshell-ai MeloTTS model.
    For Chinese, use language parameter 'ZH'; for Japanese, use 'JP'.
    """
    device = 'cuda' if torch.cuda.is_available() else 'cpu'
    lang_param = 'ZH' if lang == "Chinese" else 'JP'
    if lang not in melo_tts_cache:
        try:
            model = MeloTTS(language=lang_param, device=device)
            melo_tts_cache[lang] = model
        except Exception as e:
            raise RuntimeError(f"Failed to load MeloTTS model for {lang}: {e}")
    else:
        model = melo_tts_cache[lang]
    speaker_ids = model.hps.data.spk2id
    # Assume the speaker key is the same as lang_param
    speaker_key = lang_param
    speed = 1.0
    with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as tmp:
        tmp_name = tmp.name
    try:
        model.tts_to_file(text, speaker_ids[speaker_key], tmp_name, speed=speed)
        data, sr = sf.read(tmp_name)
    finally:
        if os.path.exists(tmp_name):
            os.remove(tmp_name)
    return sr, data

# ------------------------------------------------------
# 8. Main Prediction Function
# ------------------------------------------------------
def predict(audio, text, target_language):
    """
    1. Obtain English text (via ASR if audio provided, else text).
    2. Translate the English text to target_language.
    3. Generate TTS audio using either MMS TTS (VITS) or MeloTTS.
    """
    # Step 1: Get English text.
    if text.strip():
        english_text = text.strip()
    elif audio is not None:
        sample_rate, audio_data = audio
        if audio_data.dtype not in [np.float32, np.float64]:
            audio_data = audio_data.astype(np.float32)
        if len(audio_data.shape) > 1 and audio_data.shape[1] > 1:
            audio_data = np.mean(audio_data, axis=1)
        if sample_rate != 16000:
            audio_data = librosa.resample(audio_data, orig_sr=sample_rate, target_sr=16000)
        asr_input = {"array": audio_data, "sampling_rate": 16000}
        asr_result = asr(asr_input)
        english_text = asr_result["text"]
    else:
        return "No input provided.", "", None

    # Step 2: Translate.
    translator = get_translator(target_language)
    try:
        translation_result = translator(english_text)
        translated_text = translation_result[0]["translation_text"]
    except Exception as e:
        return english_text, f"Translation error: {e}", None

    # Step 3: TTS.
    try:
        tts_type = tts_config[target_language]["type"]
        if tts_type == "mms":
            sr, waveform = run_mms_tts(translated_text, target_language)
        elif tts_type == "melo":
            sr, waveform = run_melo_tts(translated_text, target_language)
        else:
            raise RuntimeError("Unknown TTS type for target language.")
    except Exception as e:
        return english_text, translated_text, f"TTS error: {e}"

    return english_text, translated_text, (sr, waveform)

# ------------------------------------------------------
# 9. Gradio Interface
# ------------------------------------------------------
language_choices = [
    "Spanish", "Vietnamese", "Indonesian", "Turkish", "Portuguese", "Korean", "Chinese", "Japanese"
]

iface = gr.Interface(
    fn=predict,
    inputs=[
        gr.Audio(type="numpy", label="Record/Upload English Audio (optional)"),
        gr.Textbox(lines=4, placeholder="Or enter English text here", label="English Text Input (optional)"),
        gr.Dropdown(choices=language_choices, value="Spanish", label="Target Language")
    ],
    outputs=[
        gr.Textbox(label="English Transcription"),
        gr.Textbox(label="Translation (Target Language)"),
        gr.Audio(label="Synthesized Speech")
    ],
    title="Multimodal Language Learning Aid",
    description=(
        "This app performs the following steps:\n"
        "1. Transcribes English speech using Wav2Vec2 (or accepts text input).\n"
        "2. Translates the English text to the target language using Helsinki-NLP MarianMT models.\n"
        "3. Synthesizes speech:\n"
        "   - For Spanish, Vietnamese, Indonesian, Turkish, Portuguese, and Korean: uses Facebook MMS TTS (VITS-based).\n"
        "   - For Chinese and Japanese: uses myshell-ai MeloTTS models.\n"
        "\nSelect your target language from the dropdown."
    ),
    allow_flagging="never"
)

if __name__ == "__main__":
    iface.launch(server_name="0.0.0.0", server_port=7860)