File size: 8,877 Bytes
53b4cd0
 
 
 
49730b6
 
 
53b4cd0
 
 
 
981adbd
53b4cd0
 
 
 
 
 
 
c868b41
 
53b4cd0
 
981adbd
53b4cd0
 
 
 
49730b6
5681f8c
49730b6
 
 
 
 
 
 
53b4cd0
 
 
 
49730b6
53b4cd0
 
 
 
 
49730b6
53b4cd0
 
 
 
 
49730b6
 
 
 
 
 
53b4cd0
49730b6
53b4cd0
 
 
 
 
 
 
 
647b808
53b4cd0
 
 
49730b6
 
53b4cd0
647b808
53b4cd0
 
 
 
647b808
53b4cd0
 
 
49730b6
53b4cd0
647b808
53b4cd0
49730b6
53b4cd0
 
 
981adbd
 
49730b6
 
 
 
 
 
 
53b4cd0
647b808
49730b6
 
 
 
647b808
49730b6
53b4cd0
 
 
49730b6
53b4cd0
 
49730b6
53b4cd0
 
49730b6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
647b808
 
 
 
 
 
 
 
49730b6
 
647b808
 
49730b6
 
647b808
 
49730b6
 
 
 
 
 
 
 
 
647b808
 
 
53b4cd0
647b808
53b4cd0
49730b6
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
import gradio as gr
import torch
from PIL import Image
import numpy as np
from torchvision import models, transforms
from torchvision.datasets import ImageFolder
from torch.utils.data import DataLoader
from transformers import ViTForImageClassification
from torch import nn
from torch.cuda.amp import autocast
import os
from contextlib import nullcontext

# Global configuration
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(f"Using device: {device}")

# Label mapping (HAM10K)
label_mapping = {
    0: "Меланоцитарный невус",
    1: "Меланома",
    2: "Базальноклеточная карцинома",
    3: "Актинический кератоз",
    4: "Доброкачественная кератома",
    5: "Дерматофиброма",
    6: "Сосудистые поражения"
}

# Paths and hyperparams
CHECKPOINTS_PATH = os.getenv("CHECKPOINTS_PATH", "./")
SUBMISSIONS_PATH = os.getenv("SUBMISSIONS_PATH", "./submissions")
FT_BATCH = 32
FT_EPOCHS = 1  # adjust as needed
LR = 1e-4

os.makedirs(CHECKPOINTS_PATH, exist_ok=True)
os.makedirs(SUBMISSIONS_PATH, exist_ok=True)

# Model definitions
def get_efficientnet():
    model = models.efficientnet_v2_s(weights="IMAGENET1K_V1")
    model.classifier[1] = nn.Linear(1280, len(label_mapping))
    return model.to(device)

def get_deit():
    model = ViTForImageClassification.from_pretrained(
        'facebook/deit-base-patch16-224',
        num_labels=len(label_mapping),
        ignore_mismatched_sizes=True
    )
    return model.to(device)

# Transforms
train_transform = transforms.Compose([
    transforms.Resize((224, 224)),
    transforms.ToTensor(),
    transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])

def transform_image(image):
    return train_transform(image).unsqueeze(0).to(device)

# Model Handler
class ModelHandler:
    def __init__(self):
        self.efficientnet = None
        self.deit = None
        self.models_loaded = False
        self.load_models()

    def load_models(self):
        try:
            self.efficientnet = get_efficientnet()
            eff_path = os.path.join(CHECKPOINTS_PATH, "efficientnet_best.pth")
            self.efficientnet.load_state_dict(torch.load(eff_path, map_location=device))
            self.efficientnet.eval()

            self.deit = get_deit()
            deit_path = os.path.join(CHECKPOINTS_PATH, "deit_best.pth")
            self.deit.load_state_dict(torch.load(deit_path, map_location=device))
            self.deit.eval()

            self.models_loaded = True
            print("✅ Models loaded successfully")
        except Exception as e:
            print(f"❌ Error loading models: {e}")
            self.models_loaded = False

    @torch.no_grad()
    def predict(self, image, use='efficientnet'):
        if not self.models_loaded:
            return {"error": "Модели не загружены"}
        inputs = transform_image(image)
        ctx = autocast() if device.type == 'cuda' else nullcontext()
        with ctx:
            if use == 'efficientnet':
                logits = self.efficientnet(inputs)
            elif use == 'deit':
                logits = self.deit(pixel_values=inputs).logits
            else:
                logits = (self.efficientnet(inputs) + self.deit(pixel_values=inputs).logits) / 2
            probs = torch.nn.functional.softmax(logits, dim=1)
        return self._format_predictions(probs)

    def _format_predictions(self, probs):
        top5_probs, top5_inds = torch.topk(probs, 5)
        return {label_mapping[i.item()]: float(top5_probs[0][k].item())
                for k, i in enumerate(top5_inds[0])}

# Initialize handler
model_handler = ModelHandler()

def predict_efficientnet(image):
    return "⚠️ Загрузите изображение" if image is None else model_handler.predict(image, 'efficientnet')

def predict_deit(image):
    return "⚠️ Загрузите изображение" if image is None else model_handler.predict(image, 'deit')

def predict_ensemble(image):
    return "⚠️ Загрузите изображение" if image is None else model_handler.predict(image, 'ensemble')

# Finetuning logic

def finetune_models():
    # Prepare dataset
    dataset = ImageFolder(SUBMISSIONS_PATH, transform=train_transform)
    loader = DataLoader(dataset, batch_size=8, shuffle=True)

    # Finetune EfficientNet
    eff = get_efficientnet()
    eff.load_state_dict(torch.load(os.path.join(CHECKPOINTS_PATH, "efficientnet_best.pth"), map_location=device))
    eff.train()
    optimizer = torch.optim.Adam(eff.parameters(), lr=LR)
    criterion = nn.CrossEntropyLoss()
    for epoch in range(FT_EPOCHS):
        for imgs, lbls in loader:
            imgs, lbls = imgs.to(device), lbls.to(device)
            optimizer.zero_grad()
            outputs = eff(imgs)
            loss = criterion(outputs, lbls)
            loss.backward()
            optimizer.step()
    torch.save(eff.state_dict(), os.path.join(CHECKPOINTS_PATH, "efficientnet_best.pth"))

    # Finetune DeiT
    dt = get_deit()
    dt.load_state_dict(torch.load(os.path.join(CHECKPOINTS_PATH, "deit_best.pth"), map_location=device))
    dt.train()
    optimizer = torch.optim.Adam(dt.parameters(), lr=LR)
    for epoch in range(FT_EPOCHS):
        for imgs, lbls in loader:
            imgs, lbls = imgs.to(device), lbls.to(device)
            optimizer.zero_grad()
            outputs = dt(pixel_values=imgs).logits
            loss = criterion(outputs, lbls)
            loss.backward()
            optimizer.step()
    torch.save(dt.state_dict(), os.path.join(CHECKPOINTS_PATH, "deit_best.pth"))

    # Reload into handler
    model_handler.load_models()
    print("🔄 Models fine-tuned and reloaded")


def handle_submission(image, label):
    if image is None or label is None:
        return "⚠️ Загрузите изображение и выберите метку"
    # Save image under label folder
    lbl_dir = os.path.join(SUBMISSIONS_PATH, str(label))
    os.makedirs(lbl_dir, exist_ok=True)
    idx = len([f for f in os.listdir(lbl_dir) if f.endswith(('.png','.jpg'))]) + 1
    path = os.path.join(lbl_dir, f"{label}_{idx}.png")
    image.save(path)

    # Count total submissions
    total = sum(len(files) for _, _, files in os.walk(SUBMISSIONS_PATH))
    rem = FT_BATCH - (total % FT_BATCH)
    if rem == FT_BATCH:
        rem = 0  # just reached batch multiple
    # Trigger finetune if batch complete
    if total % FT_BATCH == 0:
        finetune_models()
        # Clear submissions
        for root, _, files in os.walk(SUBMISSIONS_PATH):
            for f in files:
                os.remove(os.path.join(root, f))

    return f"Осталось {rem} изображений до следующей тонкой настройки"

# Create Gradio interface
def create_interface():
    with gr.Blocks() as demo:
        gr.Markdown("# Диагностика кожных поражений (HAM10K)")
        status = "✅ Модели готовы к предсказанию" if model_handler.models_loaded else "⚠️ Предупреждение: Модели не загружены"
        gr.Markdown(f"**Состояние моделей:** {status}")

        with gr.Tabs():
            with gr.TabItem("EfficientNet"):
                img, out = gr.Image(type="pil", label="Загрузите изображение"), gr.Label(label="Результаты")
                gr.Button("Предсказать").click(predict_efficientnet, inputs=img, outputs=out)

            with gr.TabItem("DeiT"):
                img, out = gr.Image(type="pil", label="Загрузите изображение"), gr.Label(label="Результаты")
                gr.Button("Предсказать").click(predict_deit, inputs=img, outputs=out)

            with gr.TabItem("Ансамблевая модель"):
                img, out = gr.Image(type="pil", label="Загрузите изображение"), gr.Label(label="Результаты")
                gr.Button("Предсказать").click(predict_ensemble, inputs=img, outputs=out)

            with gr.TabItem("Submit for Finetuning"):
                sub_img = gr.Image(type="pil", label="Изображение для тонкой настройки")
                sub_lbl = gr.Dropdown(choices=list(label_mapping.values()), label="Выберите метку")
                sub_btn = gr.Button("Отправить")
                sub_out = gr.Textbox(label="Статус")
                sub_btn.click(handle_submission, inputs=[sub_img, sub_lbl], outputs=sub_out)

        return demo

if __name__ == "__main__":
    interface = create_interface()
    print("🚀 Запуск интерфейса...")
    interface.launch(server_port=7860)