Spaces:
Sleeping
Sleeping
File size: 11,303 Bytes
6368661 2ee1f45 6368661 2ee1f45 6368661 2ee1f45 6368661 fd83372 6368661 2ee1f45 6368661 2ee1f45 6368661 2ee1f45 6368661 a5fa4ac 6368661 2b7299f ac724cd db34d43 fb13326 5c2da46 4c285e5 fb13326 4c285e5 5c2da46 e12043f d50b816 4c285e5 fb13326 4c285e5 fb13326 f23dab3 4c285e5 ac724cd 4c285e5 fb13326 4c285e5 645e6a2 4c285e5 a1f32fc 645e6a2 2ba022b d91f74d 2ba022b 645e6a2 fcdb808 f3e66cc c69a4de a25049c c69a4de 4c285e5 7356e47 645e6a2 78f6d8f 7356e47 645e6a2 4c285e5 78f6d8f 07be95f 645e6a2 78f6d8f 12a96f1 645e6a2 9f76001 827caed ab8f0fe 78f6d8f 16cd1ab 9f76001 7ccf16b 96f1f98 4669305 ef51cda 7ccf16b ab8f0fe ef51cda 78ab471 b1b22e2 78ab471 12a96f1 4c285e5 fb13326 ac87b40 b1b22e2 fb13326 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 |
# import gradio as gr
# import cv2
# import numpy as np
# import onnxruntime as ort
# # Load the ONNX model using onnxruntime
# onnx_model_path = "Model_IV.onnx" # Update with your ONNX model path
# session = ort.InferenceSession(onnx_model_path)
# # Function to perform object detection with the ONNX model
# def detect_objects(frame, confidence_threshold=0.5):
# # Convert the frame from BGR (OpenCV) to RGB
# image = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
# # Preprocessing: Resize and normalize the image
# # Assuming YOLO model input is 640x640, update according to your model's input size
# input_size = (640, 640)
# image_resized = cv2.resize(image, input_size)
# image_normalized = image_resized / 255.0 # Normalize to [0, 1]
# image_input = np.transpose(image_normalized, (2, 0, 1)) # Change to CHW format
# image_input = np.expand_dims(image_input, axis=0).astype(np.float32) # Add batch dimension
# # Perform inference
# inputs = {session.get_inputs()[0].name: image_input}
# outputs = session.run(None, inputs)
# # # Assuming YOLO model outputs are in the form of [boxes, confidences, class_probs]
# # boxes, confidences, class_probs = outputs
# # # Post-processing: Filter boxes by confidence threshold
# # detections = []
# # for i, confidence in enumerate(confidences[0]):
# # if confidence >= confidence_threshold:
# # x1, y1, x2, y2 = boxes[0][i]
# # class_id = np.argmax(class_probs[0][i]) # Get class with highest probability
# # detections.append((x1, y1, x2, y2, confidence, class_id))
# # # Draw bounding boxes and labels on the image
# # for (x1, y1, x2, y2, confidence, class_id) in detections:
# # color = (0, 255, 0) # Green color for bounding boxes
# # cv2.rectangle(image, (int(x1), int(y1)), (int(x2), int(y2)), color, 2)
# # label = f"Class {class_id}: {confidence:.2f}"
# # cv2.putText(image, label, (int(x1), int(y1)-10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, color, 2)
# # # Convert the image back to BGR for displaying in Gradio
# # image_bgr = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
# return outputs
# # Gradio interface to use the webcam for real-time object detection
# # Added a slider for the confidence threshold
# iface = gr.Interface(fn=detect_objects,
# #inputs=[
# # gr.Video(sources="webcam", type="numpy"), # Webcam input
# inputs = gr.Image(sources=["webcam"], type="numpy"),
# # gr.Slider(minimum=0.0, maximum=1.0, default=0.5, label="Confidence Threshold") # Confidence slider
# # ],
# outputs="image") # Show output image with bounding boxes
# iface.launch()
###
# import gradio as gr
# import cv2
# from huggingface_hub import hf_hub_download
# from gradio_webrtc import WebRTC
# from twilio.rest import Client
# import os
# from inference import YOLOv8
# model_file = hf_hub_download(
# repo_id="aje6/ASL-Fingerspelling-Detection", filename="onnx/Model_IV.onnx"
# )
# model = YOLOv8(model_file)
# account_sid = os.environ.get("TWILIO_ACCOUNT_SID")
# auth_token = os.environ.get("TWILIO_AUTH_TOKEN")
# if account_sid and auth_token:
# client = Client(account_sid, auth_token)
# token = client.tokens.create()
# rtc_configuration = {
# "iceServers": token.ice_servers,
# "iceTransportPolicy": "relay",
# }
# else:
# rtc_configuration = None
# def detection(image, conf_threshold=0.3):
# image = cv2.resize(image, (model.input_width, model.input_height))
# new_image = model.detect_objects(image, conf_threshold)
# return cv2.resize(new_image, (500, 500))
# css = """.my-group {max-width: 600px !important; max-height: 600 !important;}
# .my-column {display: flex !important; justify-content: center !important; align-items: center !important};"""
# with gr.Blocks(css=css) as demo:
# gr.HTML(
# """
# <h1 style='text-align: center'>
# YOLOv10 Webcam Stream (Powered by WebRTC ⚡️)
# </h1>
# """
# )
# gr.HTML(
# """
# <h3 style='text-align: center'>
# <a href='https://arxiv.org/abs/2405.14458' target='_blank'>arXiv</a> | <a href='https://github.com/THU-MIG/yolov10' target='_blank'>github</a>
# </h3>
# """
# )
# with gr.Column(elem_classes=["my-column"]):
# with gr.Group(elem_classes=["my-group"]):
# image = WebRTC(label="Stream", rtc_configuration=rtc_configuration)
# conf_threshold = gr.Slider(
# label="Confidence Threshold",
# minimum=0.0,
# maximum=1.0,
# step=0.05,
# value=0.30,
# )
# image.stream(
# fn=detection, inputs=[image, conf_threshold], outputs=[image], time_limit=10
# )
# if __name__ == "__main__":
# demo.launch()
# import gradio as gr
# import numpy as np
# import cv2
# from ultralytics import YOLO
# model = YOLO('Model_IV.pt')
# def transform_cv2(frame, transform):
# if transform == "cartoon":
# # prepare color
# img_color = cv2.pyrDown(cv2.pyrDown(frame))
# for _ in range(6):
# img_color = cv2.bilateralFilter(img_color, 9, 9, 7)
# img_color = cv2.pyrUp(cv2.pyrUp(img_color))
# # prepare edges
# img_edges = cv2.cvtColor(frame, cv2.COLOR_RGB2GRAY)
# img_edges = cv2.adaptiveThreshold(
# cv2.medianBlur(img_edges, 7),
# 255,
# cv2.ADAPTIVE_THRESH_MEAN_C,
# cv2.THRESH_BINARY,
# 9,
# 2,
# )
# img_edges = cv2.cvtColor(img_edges, cv2.COLOR_GRAY2RGB)
# # combine color and edges
# img = cv2.bitwise_and(img_color, img_edges)
# return img
# elif transform == "edges":
# # perform edge detection
# img = cv2.cvtColor(cv2.Canny(frame, 100, 200), cv2.COLOR_GRAY2BGR)
# return img
# else:
# return np.flipud(frame)
# with gr.Blocks() as demo:
# with gr.Row():
# with gr.Column():
# transform = gr.Dropdown(choices=["cartoon", "edges", "flip"],
# value="flip", label="Transformation")
# input_img = gr.Image(sources=["webcam"], type="numpy")
# with gr.Column():
# output_img = gr.Image(streaming=True)
# dep = input_img.stream(transform_cv2, [input_img, transform], [output_img],
# time_limit=30, stream_every=0.1, concurrency_limit=30)
# if __name__ == "__main__":
# demo.launch()
###
# import gradio as gr
# import torch
# import cv2
# # Load the YOLOv8 model
# model = torch.hub.load('ultralytics/yolov8', 'yolov8s', trust_repo=True)
# model.load_state_dict(torch.load('Model_IV'))
# def inference(img):
# results = model(img)
# annotated_img = results.render()[0]
# return annotated_img
# iface = gr.Interface(fn=inference, inputs="webcam", outputs="image")
# iface.launch()
import gradio as gr
import torch
from PIL import Image
import torchvision.transforms as T
from ultralytics import YOLO
import onnxruntime as ort
import cv2
import numpy as np
# Load your model
# model = YOLO("Model_IV.pt")
# model = torch.load("Model_IV.pt")
# model.eval()
# checkpoint = torch.load("Model_IV.pt")
# model.load_state_dict(checkpoint) # Load the saved weights
# model.eval() # Set the model to evaluation mode
# Load the onnx model
model = ort.InferenceSession("Model_IV.onnx")
# Define preprocessing
# transform = T.Compose([
# T.Resize((224, 224)), # Adjust to your model's input size
# T.ToTensor(),
# ])
def predict(image):
# # Preprocess the image
# img_tensor = transform(image).unsqueeze(0) # Add batch dimension
# # # Make prediction
# # with torch.no_grad():
# # output = model(img_tensor)
# # Process output (adjust based on your model's format)
# results = model(image)
# annotated_img = results[0].plot()
# return annotated_img
# Preprocess the image
# Get name and shape of the model's inputs
input_name = model.get_inputs()[0].name
input_shape = model.get_inputs()[0].shape
# Resize the image to the model's input shape
image = cv2.resize(image, (input_shape[2], input_shape[3]))
original_image_shape = image.shape
print("Original image shape:", original_image_shape)
# Reshape the image to match the model's input shape
image = image.reshape(3, 640, 640)
# Normalize output image using ImageNet-style normalization
mean = [0.485, 0.456, 0.406]
std = [0.229, 0.224, 0.225]
mean = np.expand_dims(mean, axis=(1,2))
std = np.expand_dims(std, axis=(1,2))
image = (image / 255.0 - mean)/std
# Convert the image to a numpy array and add a batch dimension
if len(input_shape) == 4 and input_shape[0] == 1:
image = np.expand_dims(image, axis=0)
image = image.astype(np.float32)
print("Input image shape:", image.shape)
# Make prediction
output = model.run(None, {input_name: image})
# print("Output shape:", output.shape)
# print("type output:", type(output))
# print(output)
# Postprocess output image
annotated_img = output[0]
# annotated_img = (output[0] / 255.0 - mean)/std
# annotated_img = classes[output[0][0].argmax(0)]
print("Annotated image type before normalization:", type(annotated_img))
# print("Annotated image before normalization:", annotated_img)
print("Min value of image before normalization:", np.min(annotated_img))
print("Max value of image before normalization:", np.max(annotated_img))
# # Normalize output image using ImageNet-style normalization (again)
# annotated_img = (annotated_img / 255.0 - mean)/std
# Normalize output image using Min-Max normalization
min_val = np.min(annotated_img)
max_val = np.max(annotated_img)
annotated_img = (annotated_img - min_val) / (max_val - min_val)
print("Min value of image after normalization:", np.min(annotated_img))
print("Max value of image after normalization:", np.max(annotated_img))
print("annotated_img type after normalization:", type(annotated_img))
# print("annotated_img shape after normalization:", annotated_img.shape)
# Reshape the image to match the PIL Image input shape
print("annotated_img shape before reshape:", annotated_img.shape)
annotated_img = annotated_img.reshape(original_image_shape)
print("annotated_img shape after reshape:", annotated_img.shape)
# Convert to PIL Image
annotated_img = Image.fromarray(annotated_img)
print("PIL Image type:", type(annotated_img))
# print("PIL Image shape:", annotated_img.shape)
return annotated_img
# Gradio interface
demo = gr.Interface(
fn=predict,
inputs=gr.Image(sources=["webcam"], type="numpy"), # Accepts image input
# outputs="image" # Customize based on your output format
outputs=gr.Image(type="pil"), # Accepts image input
)
if __name__ == "__main__":
demo.launch() |