File size: 21,636 Bytes
944a871
 
 
 
 
 
 
ad7599c
 
 
 
 
 
 
 
4a955b1
ad7599c
 
 
 
 
 
4a955b1
944a871
ad7599c
 
 
 
 
 
 
4a955b1
ad7599c
 
 
 
4a955b1
ad7599c
 
 
 
4a955b1
ad7599c
 
 
 
4a955b1
ad7599c
 
 
 
 
 
 
4a955b1
ad7599c
 
 
 
 
 
 
4a955b1
ad7599c
 
 
 
4a955b1
ad7599c
 
 
 
 
4a955b1
944a871
ad7599c
 
 
944a871
4a955b1
944a871
 
ad7599c
 
 
4a955b1
944a871
ad7599c
 
944a871
4a955b1
944a871
ad7599c
944a871
 
ad7599c
 
 
 
 
 
 
944a871
ad7599c
 
944a871
ad7599c
4a955b1
2b2c10a
 
 
 
 
 
 
 
 
 
 
 
 
 
ad7599c
944a871
4a955b1
944a871
ad7599c
 
 
 
 
 
 
4a955b1
944a871
 
 
4a955b1
944a871
ad7599c
4a955b1
 
ad7599c
4a955b1
944a871
 
ad7599c
 
 
4a955b1
 
944a871
 
4a955b1
944a871
 
ad7599c
944a871
ad7599c
944a871
4a955b1
ad7599c
944a871
4a955b1
944a871
ad7599c
944a871
 
ad7599c
 
944a871
 
 
ad7599c
 
944a871
ad7599c
4a955b1
944a871
ad7599c
4a955b1
24ebdcb
ad7599c
944a871
24ebdcb
4a955b1
ad7599c
 
 
4a955b1
ad7599c
 
4a955b1
24ebdcb
944a871
ad7599c
 
 
 
4a955b1
ad7599c
4a955b1
ad7599c
 
4a955b1
ad7599c
 
4a955b1
ad7599c
 
4a955b1
ad7599c
 
4a955b1
ad7599c
 
4a955b1
944a871
ad7599c
 
 
944a871
4a955b1
24ebdcb
944a871
 
4a955b1
24ebdcb
ad7599c
4a955b1
24ebdcb
944a871
ad7599c
 
 
4a955b1
ad7599c
4a955b1
ad7599c
 
 
4a955b1
ad7599c
4a955b1
 
ad7599c
 
4a955b1
ad7599c
 
4a955b1
ad7599c
 
 
 
 
4a955b1
ad7599c
4a955b1
ad7599c
 
 
4a955b1
ad7599c
 
 
4a955b1
ad7599c
 
 
 
 
4a955b1
ad7599c
4a955b1
ad7599c
 
 
4a955b1
ad7599c
4a955b1
 
ad7599c
 
 
 
 
4a955b1
ad7599c
4a955b1
ad7599c
 
 
4a955b1
 
ad7599c
4a955b1
ad7599c
4a955b1
ad7599c
 
 
 
 
4a955b1
ad7599c
4a955b1
ad7599c
 
4a955b1
ad7599c
 
 
 
 
4a955b1
ad7599c
4a955b1
ad7599c
4a955b1
ad7599c
 
 
 
 
4a955b1
ad7599c
4a955b1
ad7599c
4a955b1
ad7599c
 
 
4a955b1
ad7599c
 
 
4a955b1
ad7599c
4a955b1
 
 
ad7599c
4a955b1
 
 
ad7599c
 
 
4a955b1
ad7599c
 
 
 
4a955b1
 
ad7599c
 
4a955b1
ad7599c
 
4a955b1
ad7599c
 
4a955b1
ad7599c
 
4a955b1
ceca234
 
 
 
 
ad7599c
 
 
 
4a955b1
ad7599c
 
 
4a955b1
ceca234
 
 
 
 
 
ad7599c
4a955b1
ad7599c
 
4a955b1
ad7599c
 
4a955b1
ad7599c
 
 
 
 
4a955b1
796d1cd
 
4a955b1
ad7599c
 
4a955b1
ad7599c
 
4a955b1
ad7599c
 
 
 
 
 
796d1cd
4a955b1
796d1cd
4a955b1
796d1cd
4a955b1
796d1cd
 
ad7599c
 
 
 
 
796d1cd
4a955b1
796d1cd
 
ad7599c
 
 
4a955b1
ad7599c
4a955b1
ad7599c
4a955b1
ad7599c
 
 
4a955b1
796d1cd
ad7599c
4a955b1
 
796d1cd
ad7599c
796d1cd
ad7599c
 
 
 
 
 
 
 
 
 
 
796d1cd
4a955b1
796d1cd
4a955b1
796d1cd
 
ad7599c
 
 
4a955b1
944a871
 
ad7599c
 
 
 
 
944a871
4a955b1
944a871
ad7599c
 
 
 
 
944a871
4a955b1
ad7599c
 
4a955b1
ad7599c
4a955b1
ad7599c
 
4a955b1
ad7599c
 
 
 
4a955b1
ad7599c
 
4a955b1
ad7599c
 
 
 
 
 
 
4a955b1
ad7599c
 
 
 
 
 
 
4a955b1
944a871
 
ad7599c
 
4a955b1
 
 
ad7599c
 
4a955b1
ad7599c
4a955b1
944a871
ad7599c
4a955b1
944a871
ad7599c
 
 
 
 
944a871
4a955b1
ad7599c
 
 
 
 
 
4a955b1
ad7599c
 
 
 
4a955b1
ad7599c
4a955b1
ad7599c
 
 
4a955b1
ad7599c
944a871
4a955b1
ad7599c
 
 
 
4a955b1
 
944a871
 
ad7599c
 
4a955b1
 
 
 
ad7599c
 
4a955b1
944a871
4a955b1
ad7599c
 
 
 
944a871
ad7599c
 
 
 
 
 
4a955b1
 
ad7599c
4a955b1
ad7599c
 
4a955b1
 
 
 
 
ad7599c
 
4a955b1
ad7599c
4a955b1
ad7599c
 
 
944a871
ad7599c
 
 
 
 
944a871
 
 
4a955b1
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
# src/leaderboard.py
import pandas as pd
from datasets import Dataset, load_dataset
import json
import datetime
from typing import Dict, List, Optional, Tuple
import os
import numpy as np
from config import (
    LEADERBOARD_DATASET,
    HF_TOKEN,
    EVALUATION_TRACKS,
    MODEL_CATEGORIES,
    STATISTICAL_CONFIG,
    METRICS_CONFIG,
    SAMPLE_SIZE_RECOMMENDATIONS,
)
from src.utils import create_submission_id, sanitize_model_name


def initialize_scientific_leaderboard() -> pd.DataFrame:
    """Initialize empty scientific leaderboard DataFrame with all required columns."""
    
    columns = {
        # Basic information
        "submission_id": [],
        "model_name": [],
        "author": [],
        "submission_date": [],
        "model_category": [],
        "description": [],
        
        # Track-specific quality scores
        "google_comparable_quality": [],
        "ug40_complete_quality": [],
        "language_pair_matrix_quality": [],
        
        # Track-specific BLEU scores
        "google_comparable_bleu": [],
        "ug40_complete_bleu": [],
        "language_pair_matrix_bleu": [],
        
        # Track-specific ChrF scores
        "google_comparable_chrf": [],
        "ug40_complete_chrf": [],
        "language_pair_matrix_chrf": [],
        
        # Statistical metadata
        "google_comparable_ci_lower": [],
        "google_comparable_ci_upper": [],
        "ug40_complete_ci_lower": [],
        "ug40_complete_ci_upper": [],
        "language_pair_matrix_ci_lower": [],
        "language_pair_matrix_ci_upper": [],
        
        # Coverage information
        "google_comparable_samples": [],
        "ug40_complete_samples": [],
        "language_pair_matrix_samples": [],
        "google_comparable_pairs": [],
        "ug40_complete_pairs": [],
        "language_pair_matrix_pairs": [],
        
        # Statistical adequacy flags
        "google_comparable_adequate": [],
        "ug40_complete_adequate": [],
        "language_pair_matrix_adequate": [],
        
        # Detailed results (JSON strings)
        "detailed_google_comparable": [],
        "detailed_ug40_complete": [],
        "detailed_language_pair_matrix": [],
        "cross_track_analysis": [],
        
        # Metadata
        "evaluation_date": [],
        "leaderboard_version": [],
        "scientific_adequacy_score": [],
    }
    
    return pd.DataFrame(columns)


def load_scientific_leaderboard() -> pd.DataFrame:
    """Load current scientific leaderboard from HuggingFace dataset."""
    
    try:
        print("πŸ“₯ Loading scientific leaderboard...")
        dataset = load_dataset(LEADERBOARD_DATASET + "-scientific", split="train")
        df = dataset.to_pandas()
        
        # Ensure all required columns exist
        required_columns = list(initialize_scientific_leaderboard().columns)
        for col in required_columns:
            if col not in df.columns:
                if "quality" in col or "bleu" in col or "chrf" in col or "ci_" in col:
                    df[col] = 0.0
                elif "samples" in col or "pairs" in col:
                    df[col] = 0
                elif "adequate" in col:
                    df[col] = False
                elif col == "scientific_adequacy_score":
                    df[col] = 0.0
                elif col == "leaderboard_version":
                    df[col] = 2  # Scientific version
                else:
                    df[col] = ""
        
        # Ensure proper data types for boolean columns
        boolean_columns = [col for col in df.columns if "adequate" in col]
        for col in boolean_columns:
            df[col] = df[col].fillna(False).astype(bool)
        
        # Ensure proper data types for numeric columns
        numeric_columns = [
            col for col in df.columns 
            if any(x in col for x in ["quality", "bleu", "chrf", "ci_", "samples", "pairs", "adequacy"])
            and "adequate" not in col
        ]
        for col in numeric_columns:
            df[col] = pd.to_numeric(df[col], errors='coerce').fillna(0.0)
        
        print(f"βœ… Loaded scientific leaderboard with {len(df)} entries")
        return df
        
    except Exception as e:
        print(f"⚠️ Could not load scientific leaderboard: {e}")
        print("πŸ”„ Initializing empty scientific leaderboard...")
        return initialize_scientific_leaderboard()


def save_scientific_leaderboard(df: pd.DataFrame) -> bool:
    """Save scientific leaderboard to HuggingFace dataset."""
    
    try:
        # Clean data before saving
        df_clean = df.copy()
        
        # Ensure numeric columns are proper types
        numeric_columns = [
            col for col in df_clean.columns 
            if any(x in col for x in ["quality", "bleu", "chrf", "ci_", "samples", "pairs", "adequacy"])
        ]
        
        for col in numeric_columns:
            if col in df_clean.columns:
                if "adequate" in col:
                    df_clean[col] = df_clean[col].astype(bool)
                else:
                    df_clean[col] = pd.to_numeric(df_clean[col], errors="coerce").fillna(0.0)
        
        # Convert to dataset
        dataset = Dataset.from_pandas(df_clean)
        
        # Push to hub
        dataset.push_to_hub(
            LEADERBOARD_DATASET + "-scientific",
            token=HF_TOKEN,
            commit_message=f"Update scientific leaderboard - {datetime.datetime.now().isoformat()[:19]}",
        )
        
        print("βœ… Scientific leaderboard saved successfully!")
        return True
        
    except Exception as e:
        print(f"❌ Error saving scientific leaderboard: {e}")
        return False


def add_model_to_scientific_leaderboard(
    model_name: str,
    author: str,
    evaluation_results: Dict,
    model_category: str = "community",
    description: str = "",
) -> pd.DataFrame:
    """Add new model results to scientific leaderboard."""
    
    # Load current leaderboard
    df = load_scientific_leaderboard()
    
    # Remove existing entry if present
    existing_mask = df["model_name"] == model_name
    if existing_mask.any():
        df = df[~existing_mask]
    
    # Extract track results
    tracks = evaluation_results.get("tracks", {})
    cross_track = evaluation_results.get("cross_track_analysis", {})
    
    # Calculate scientific adequacy score
    adequacy_score = calculate_scientific_adequacy_score(evaluation_results)
    
    # Prepare new entry
    new_entry = {
        "submission_id": create_submission_id(),
        "model_name": sanitize_model_name(model_name),
        "author": author[:100] if author else "Anonymous",
        "submission_date": datetime.datetime.now().isoformat(),
        "model_category": model_category if model_category in MODEL_CATEGORIES else "community",
        "description": description[:500] if description else "",
        
        # Extract track-specific metrics
        **extract_track_metrics(tracks),
        
        # Statistical metadata
        **extract_statistical_metadata(tracks),
        
        # Coverage information
        **extract_coverage_information(tracks),
        
        # Adequacy flags
        **extract_adequacy_flags(tracks),
        
        # Detailed results (JSON strings)
        **serialize_detailed_results(tracks, cross_track),
        
        # Metadata
        "evaluation_date": datetime.datetime.now().isoformat(),
        "leaderboard_version": 2,
        "scientific_adequacy_score": adequacy_score,
    }
    
    # Convert to DataFrame and append
    new_row_df = pd.DataFrame([new_entry])
    updated_df = pd.concat([df, new_row_df], ignore_index=True)
    
    # Save to hub
    save_scientific_leaderboard(updated_df)
    
    return updated_df


def extract_track_metrics(tracks: Dict) -> Dict:
    """Extract primary metrics from each track."""
    
    metrics = {}
    
    for track_name in EVALUATION_TRACKS.keys():
        track_data = tracks.get(track_name, {})
        track_averages = track_data.get("track_averages", {})
        
        # Quality score
        metrics[f"{track_name}_quality"] = float(track_averages.get("quality_score", 0.0))
        
        # BLEU score
        metrics[f"{track_name}_bleu"] = float(track_averages.get("bleu", 0.0))
        
        # ChrF score
        metrics[f"{track_name}_chrf"] = float(track_averages.get("chrf", 0.0))
    
    return metrics


def extract_statistical_metadata(tracks: Dict) -> Dict:
    """Extract confidence intervals from each track."""
    
    metadata = {}
    
    for track_name in EVALUATION_TRACKS.keys():
        track_data = tracks.get(track_name, {})
        track_statistics = track_data.get("track_statistics", {})
        
        quality_stats = track_statistics.get("quality_score", {})
        metadata[f"{track_name}_ci_lower"] = float(quality_stats.get("ci_lower", 0.0))
        metadata[f"{track_name}_ci_upper"] = float(quality_stats.get("ci_upper", 0.0))
    
    return metadata


def extract_coverage_information(tracks: Dict) -> Dict:
    """Extract coverage information from each track."""
    
    coverage = {}
    
    for track_name in EVALUATION_TRACKS.keys():
        track_data = tracks.get(track_name, {})
        summary = track_data.get("summary", {})
        
        coverage[f"{track_name}_samples"] = int(summary.get("total_samples", 0))
        coverage[f"{track_name}_pairs"] = int(summary.get("language_pairs_evaluated", 0))
    
    return coverage


def extract_adequacy_flags(tracks: Dict) -> Dict:
    """Extract statistical adequacy flags for each track."""
    
    adequacy = {}
    
    for track_name in EVALUATION_TRACKS.keys():
        track_data = tracks.get(track_name, {})
        summary = track_data.get("summary", {})
        
        min_required = EVALUATION_TRACKS[track_name]["min_samples_per_pair"] * summary.get("language_pairs_evaluated", 0)
        is_adequate = summary.get("total_samples", 0) >= min_required
        
        adequacy[f"{track_name}_adequate"] = bool(is_adequate)
    
    return adequacy


def serialize_detailed_results(tracks: Dict, cross_track: Dict) -> Dict:
    """Serialize detailed results for storage."""
    
    detailed = {}
    
    for track_name in EVALUATION_TRACKS.keys():
        track_data = tracks.get(track_name, {})
        
        # Remove non-serializable data
        safe_track_data = {}
        for key, value in track_data.items():
            if key != "sample_metrics":  # Skip large DataFrames
                safe_track_data[key] = value
        
        detailed[f"detailed_{track_name}"] = json.dumps(safe_track_data)
    
    detailed["cross_track_analysis"] = json.dumps(cross_track)
    
    return detailed


def calculate_scientific_adequacy_score(evaluation_results: Dict) -> float:
    """Calculate overall scientific adequacy score (0-1)."""
    
    tracks = evaluation_results.get("tracks", {})
    
    adequacy_scores = []
    
    for track_name in EVALUATION_TRACKS.keys():
        track_data = tracks.get(track_name, {})
        summary = track_data.get("summary", {})
        
        if track_data.get("error"):
            adequacy_scores.append(0.0)
            continue
        
        # Sample size adequacy
        min_required = EVALUATION_TRACKS[track_name]["min_samples_per_pair"] * summary.get("language_pairs_evaluated", 0)
        sample_adequacy = min(summary.get("total_samples", 0) / max(min_required, 1), 1.0)
        
        # Coverage adequacy
        total_possible_pairs = len(EVALUATION_TRACKS[track_name]["languages"]) * (len(EVALUATION_TRACKS[track_name]["languages"]) - 1)
        coverage_adequacy = summary.get("language_pairs_evaluated", 0) / max(total_possible_pairs, 1)
        
        # Track adequacy
        track_adequacy = (sample_adequacy + coverage_adequacy) / 2
        adequacy_scores.append(track_adequacy)
    
    return float(np.mean(adequacy_scores))


def get_track_leaderboard(
    df: pd.DataFrame, 
    track: str, 
    metric: str = "quality",
    category_filter: str = "all",
    min_adequacy: float = 0.0
) -> pd.DataFrame:
    """Get leaderboard for a specific track with filtering."""
    
    if df.empty:
        return df
    
    track_quality_col = f"{track}_{metric}"
    track_adequate_col = f"{track}_adequate"
    
    # Ensure columns exist
    if track_quality_col not in df.columns or track_adequate_col not in df.columns:
        print(f"Warning: Missing columns for track {track}")
        return pd.DataFrame()
    
    # Filter by adequacy
    if min_adequacy > 0:
        adequacy_mask = df["scientific_adequacy_score"] >= min_adequacy
        df = df[adequacy_mask]
    
    # Filter by category
    if category_filter != "all":
        df = df[df["model_category"] == category_filter]
    
    # Filter to models that have this track - fix boolean operation
    # Convert to proper boolean and handle NaN values
    quality_mask = pd.to_numeric(df[track_quality_col], errors='coerce') > 0
    adequate_mask = df[track_adequate_col].fillna(False).astype(bool)
    
    valid_mask = quality_mask & adequate_mask
    df = df[valid_mask]
    
    if df.empty:
        return df
    
    # Sort by track-specific metric
    df = df.sort_values(track_quality_col, ascending=False).reset_index(drop=True)
    
    return df


def prepare_track_leaderboard_display(df: pd.DataFrame, track: str) -> pd.DataFrame:
    """Prepare track-specific leaderboard for display."""
    
    if df.empty:
        return df
    
    # Select relevant columns for this track
    base_columns = ["model_name", "author", "submission_date", "model_category"]
    
    track_columns = [
        f"{track}_quality",
        f"{track}_bleu", 
        f"{track}_chrf",
        f"{track}_ci_lower",
        f"{track}_ci_upper",
        f"{track}_samples",
        f"{track}_pairs",
        f"{track}_adequate",
    ]
    
    # Only include columns that exist
    available_columns = [col for col in base_columns + track_columns if col in df.columns]
    display_df = df[available_columns].copy()
    
    # Format numeric columns
    numeric_format = {
        f"{track}_quality": "{:.4f}",
        f"{track}_bleu": "{:.2f}",
        f"{track}_chrf": "{:.4f}",
        f"{track}_ci_lower": "{:.4f}",
        f"{track}_ci_upper": "{:.4f}",
    }
    
    for col, fmt in numeric_format.items():
        if col in display_df.columns:
            display_df[col] = display_df[col].apply(
                lambda x: fmt.format(float(x)) if pd.notnull(x) else "0.0000"
            )
    
    # Format confidence intervals
    if f"{track}_ci_lower" in display_df.columns and f"{track}_ci_upper" in display_df.columns:
        display_df[f"{track}_confidence_interval"] = (
            "[" + display_df[f"{track}_ci_lower"] + ", " + display_df[f"{track}_ci_upper"] + "]"
        )
        # Remove individual CI columns for cleaner display
        display_df = display_df.drop(columns=[f"{track}_ci_lower", f"{track}_ci_upper"])
    
    # Format submission date
    if "submission_date" in display_df.columns:
        display_df["submission_date"] = pd.to_datetime(display_df["submission_date"]).dt.strftime("%Y-%m-%d")
    
    # Rename columns for better display
    track_name = EVALUATION_TRACKS[track]["name"].split()[0]  # First word
    column_renames = {
        "model_name": "Model Name",
        "author": "Author",
        "submission_date": "Submitted",
        "model_category": "Category",
        f"{track}_quality": f"{track_name} Quality",
        f"{track}_bleu": f"{track_name} BLEU",
        f"{track}_chrf": f"{track_name} ChrF",
        f"{track}_confidence_interval": "95% CI",
        f"{track}_samples": "Samples",
        f"{track}_pairs": "Pairs",
        f"{track}_adequate": "Adequate",
    }
    
    display_df = display_df.rename(columns=column_renames)
    
    return display_df


def get_scientific_leaderboard_stats(df: pd.DataFrame, track: str = None) -> Dict:
    """Get comprehensive statistics for the scientific leaderboard."""
    
    if df.empty:
        return {
            "total_models": 0,
            "models_by_category": {},
            "track_statistics": {},
            "adequacy_distribution": {},
            "best_models_by_track": {},
        }
    
    stats = {
        "total_models": len(df),
        "models_by_category": df["model_category"].value_counts().to_dict(),
        "adequacy_distribution": {},
        "track_statistics": {},
        "best_models_by_track": {},
    }
    
    # Adequacy distribution
    adequacy_bins = pd.cut(
        df["scientific_adequacy_score"], 
        bins=[0, 0.3, 0.6, 0.8, 1.0],
        labels=["Poor", "Fair", "Good", "Excellent"]
    )
    stats["adequacy_distribution"] = adequacy_bins.value_counts().to_dict()
    
    # Track-specific statistics
    for track_name in EVALUATION_TRACKS.keys():
        quality_col = f"{track_name}_quality"
        adequate_col = f"{track_name}_adequate"
        
        if quality_col in df.columns and adequate_col in df.columns:
            track_models = df[df[adequate_col] & (df[quality_col] > 0)]
            
            if len(track_models) > 0:
                stats["track_statistics"][track_name] = {
                    "participating_models": len(track_models),
                    "avg_quality": float(track_models[quality_col].mean()),
                    "std_quality": float(track_models[quality_col].std()),
                    "best_quality": float(track_models[quality_col].max()),
                }
                
                # Best model for this track
                best_model = track_models.loc[track_models[quality_col].idxmax()]
                stats["best_models_by_track"][track_name] = {
                    "name": best_model["model_name"],
                    "category": best_model["model_category"],
                    "quality": float(best_model[quality_col]),
                }
    
    return stats


def perform_fair_comparison(
    df: pd.DataFrame, 
    model_names: List[str], 
    shared_pairs_only: bool = True
) -> Dict:
    """Perform fair comparison between models using only shared language pairs."""
    
    models = df[df["model_name"].isin(model_names)]
    
    if len(models) == 0:
        return {"error": "No models found"}
    
    comparison = {
        "models": list(models["model_name"]),
        "fair_comparison_possible": True,
        "track_comparisons": {},
        "statistical_significance": {},
        "recommendations": [],
    }
    
    # Check if fair comparison is possible
    categories = models["model_category"].unique()
    if len(categories) > 1:
        comparison["recommendations"].append(
            "⚠️ Comparing models from different categories - interpret results carefully"
        )
    
    # For each track, compare models
    for track_name in EVALUATION_TRACKS.keys():
        quality_col = f"{track_name}_quality"
        adequate_col = f"{track_name}_adequate"
        
        track_models = models[models[adequate_col] & (models[quality_col] > 0)]
        
        if len(track_models) >= 2:
            comparison["track_comparisons"][track_name] = {
                "participating_models": len(track_models),
                "quality_scores": dict(zip(track_models["model_name"], track_models[quality_col])),
                "confidence_intervals": {},
            }
            
            # Extract confidence intervals
            for _, model in track_models.iterrows():
                ci_lower = model.get(f"{track_name}_ci_lower", 0)
                ci_upper = model.get(f"{track_name}_ci_upper", 0)
                comparison["track_comparisons"][track_name]["confidence_intervals"][model["model_name"]] = [ci_lower, ci_upper]
    
    return comparison


def export_scientific_leaderboard(
    df: pd.DataFrame, 
    track: str = "all", 
    format: str = "csv", 
    include_detailed: bool = False
) -> str:
    """Export scientific leaderboard in specified format."""
    
    timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
    
    if track != "all":
        # Export specific track
        export_df = prepare_track_leaderboard_display(df, track)
        filename_prefix = f"salt_leaderboard_{track}_{timestamp}"
    else:
        # Export all tracks
        if include_detailed:
            export_df = df.copy()
        else:
            # Select essential columns
            essential_columns = [
                "model_name", "author", "submission_date", "model_category",
                "scientific_adequacy_score"
            ]
            
            # Add track-specific quality scores
            for track_name in EVALUATION_TRACKS.keys():
                essential_columns.extend([
                    f"{track_name}_quality",
                    f"{track_name}_adequate",
                ])
            
            available_columns = [col for col in essential_columns if col in df.columns]
            export_df = df[available_columns].copy()
        
        filename_prefix = f"salt_leaderboard_scientific_{timestamp}"
    
    # Export in specified format
    if format == "csv":
        filename = f"{filename_prefix}.csv"
        export_df.to_csv(filename, index=False)
    elif format == "json":
        filename = f"{filename_prefix}.json"
        export_df.to_json(filename, orient="records", indent=2)
    elif format == "xlsx":
        filename = f"{filename_prefix}.xlsx"
        export_df.to_excel(filename, index=False)
    else:
        raise ValueError(f"Unsupported format: {format}")
    
    return filename