Spaces:
Running
Running
File size: 21,636 Bytes
944a871 ad7599c 4a955b1 ad7599c 4a955b1 944a871 ad7599c 4a955b1 ad7599c 4a955b1 ad7599c 4a955b1 ad7599c 4a955b1 ad7599c 4a955b1 ad7599c 4a955b1 ad7599c 4a955b1 ad7599c 4a955b1 944a871 ad7599c 944a871 4a955b1 944a871 ad7599c 4a955b1 944a871 ad7599c 944a871 4a955b1 944a871 ad7599c 944a871 ad7599c 944a871 ad7599c 944a871 ad7599c 4a955b1 2b2c10a ad7599c 944a871 4a955b1 944a871 ad7599c 4a955b1 944a871 4a955b1 944a871 ad7599c 4a955b1 ad7599c 4a955b1 944a871 ad7599c 4a955b1 944a871 4a955b1 944a871 ad7599c 944a871 ad7599c 944a871 4a955b1 ad7599c 944a871 4a955b1 944a871 ad7599c 944a871 ad7599c 944a871 ad7599c 944a871 ad7599c 4a955b1 944a871 ad7599c 4a955b1 24ebdcb ad7599c 944a871 24ebdcb 4a955b1 ad7599c 4a955b1 ad7599c 4a955b1 24ebdcb 944a871 ad7599c 4a955b1 ad7599c 4a955b1 ad7599c 4a955b1 ad7599c 4a955b1 ad7599c 4a955b1 ad7599c 4a955b1 ad7599c 4a955b1 944a871 ad7599c 944a871 4a955b1 24ebdcb 944a871 4a955b1 24ebdcb ad7599c 4a955b1 24ebdcb 944a871 ad7599c 4a955b1 ad7599c 4a955b1 ad7599c 4a955b1 ad7599c 4a955b1 ad7599c 4a955b1 ad7599c 4a955b1 ad7599c 4a955b1 ad7599c 4a955b1 ad7599c 4a955b1 ad7599c 4a955b1 ad7599c 4a955b1 ad7599c 4a955b1 ad7599c 4a955b1 ad7599c 4a955b1 ad7599c 4a955b1 ad7599c 4a955b1 ad7599c 4a955b1 ad7599c 4a955b1 ad7599c 4a955b1 ad7599c 4a955b1 ad7599c 4a955b1 ad7599c 4a955b1 ad7599c 4a955b1 ad7599c 4a955b1 ad7599c 4a955b1 ad7599c 4a955b1 ad7599c 4a955b1 ad7599c 4a955b1 ad7599c 4a955b1 ad7599c 4a955b1 ad7599c 4a955b1 ad7599c 4a955b1 ad7599c 4a955b1 ad7599c 4a955b1 ad7599c 4a955b1 ad7599c 4a955b1 ad7599c 4a955b1 ad7599c 4a955b1 ceca234 ad7599c 4a955b1 ad7599c 4a955b1 ceca234 ad7599c 4a955b1 ad7599c 4a955b1 ad7599c 4a955b1 ad7599c 4a955b1 796d1cd 4a955b1 ad7599c 4a955b1 ad7599c 4a955b1 ad7599c 796d1cd 4a955b1 796d1cd 4a955b1 796d1cd 4a955b1 796d1cd ad7599c 796d1cd 4a955b1 796d1cd ad7599c 4a955b1 ad7599c 4a955b1 ad7599c 4a955b1 ad7599c 4a955b1 796d1cd ad7599c 4a955b1 796d1cd ad7599c 796d1cd ad7599c 796d1cd 4a955b1 796d1cd 4a955b1 796d1cd ad7599c 4a955b1 944a871 ad7599c 944a871 4a955b1 944a871 ad7599c 944a871 4a955b1 ad7599c 4a955b1 ad7599c 4a955b1 ad7599c 4a955b1 ad7599c 4a955b1 ad7599c 4a955b1 ad7599c 4a955b1 ad7599c 4a955b1 944a871 ad7599c 4a955b1 ad7599c 4a955b1 ad7599c 4a955b1 944a871 ad7599c 4a955b1 944a871 ad7599c 944a871 4a955b1 ad7599c 4a955b1 ad7599c 4a955b1 ad7599c 4a955b1 ad7599c 4a955b1 ad7599c 944a871 4a955b1 ad7599c 4a955b1 944a871 ad7599c 4a955b1 ad7599c 4a955b1 944a871 4a955b1 ad7599c 944a871 ad7599c 4a955b1 ad7599c 4a955b1 ad7599c 4a955b1 ad7599c 4a955b1 ad7599c 4a955b1 ad7599c 944a871 ad7599c 944a871 4a955b1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 |
# src/leaderboard.py
import pandas as pd
from datasets import Dataset, load_dataset
import json
import datetime
from typing import Dict, List, Optional, Tuple
import os
import numpy as np
from config import (
LEADERBOARD_DATASET,
HF_TOKEN,
EVALUATION_TRACKS,
MODEL_CATEGORIES,
STATISTICAL_CONFIG,
METRICS_CONFIG,
SAMPLE_SIZE_RECOMMENDATIONS,
)
from src.utils import create_submission_id, sanitize_model_name
def initialize_scientific_leaderboard() -> pd.DataFrame:
"""Initialize empty scientific leaderboard DataFrame with all required columns."""
columns = {
# Basic information
"submission_id": [],
"model_name": [],
"author": [],
"submission_date": [],
"model_category": [],
"description": [],
# Track-specific quality scores
"google_comparable_quality": [],
"ug40_complete_quality": [],
"language_pair_matrix_quality": [],
# Track-specific BLEU scores
"google_comparable_bleu": [],
"ug40_complete_bleu": [],
"language_pair_matrix_bleu": [],
# Track-specific ChrF scores
"google_comparable_chrf": [],
"ug40_complete_chrf": [],
"language_pair_matrix_chrf": [],
# Statistical metadata
"google_comparable_ci_lower": [],
"google_comparable_ci_upper": [],
"ug40_complete_ci_lower": [],
"ug40_complete_ci_upper": [],
"language_pair_matrix_ci_lower": [],
"language_pair_matrix_ci_upper": [],
# Coverage information
"google_comparable_samples": [],
"ug40_complete_samples": [],
"language_pair_matrix_samples": [],
"google_comparable_pairs": [],
"ug40_complete_pairs": [],
"language_pair_matrix_pairs": [],
# Statistical adequacy flags
"google_comparable_adequate": [],
"ug40_complete_adequate": [],
"language_pair_matrix_adequate": [],
# Detailed results (JSON strings)
"detailed_google_comparable": [],
"detailed_ug40_complete": [],
"detailed_language_pair_matrix": [],
"cross_track_analysis": [],
# Metadata
"evaluation_date": [],
"leaderboard_version": [],
"scientific_adequacy_score": [],
}
return pd.DataFrame(columns)
def load_scientific_leaderboard() -> pd.DataFrame:
"""Load current scientific leaderboard from HuggingFace dataset."""
try:
print("π₯ Loading scientific leaderboard...")
dataset = load_dataset(LEADERBOARD_DATASET + "-scientific", split="train")
df = dataset.to_pandas()
# Ensure all required columns exist
required_columns = list(initialize_scientific_leaderboard().columns)
for col in required_columns:
if col not in df.columns:
if "quality" in col or "bleu" in col or "chrf" in col or "ci_" in col:
df[col] = 0.0
elif "samples" in col or "pairs" in col:
df[col] = 0
elif "adequate" in col:
df[col] = False
elif col == "scientific_adequacy_score":
df[col] = 0.0
elif col == "leaderboard_version":
df[col] = 2 # Scientific version
else:
df[col] = ""
# Ensure proper data types for boolean columns
boolean_columns = [col for col in df.columns if "adequate" in col]
for col in boolean_columns:
df[col] = df[col].fillna(False).astype(bool)
# Ensure proper data types for numeric columns
numeric_columns = [
col for col in df.columns
if any(x in col for x in ["quality", "bleu", "chrf", "ci_", "samples", "pairs", "adequacy"])
and "adequate" not in col
]
for col in numeric_columns:
df[col] = pd.to_numeric(df[col], errors='coerce').fillna(0.0)
print(f"β
Loaded scientific leaderboard with {len(df)} entries")
return df
except Exception as e:
print(f"β οΈ Could not load scientific leaderboard: {e}")
print("π Initializing empty scientific leaderboard...")
return initialize_scientific_leaderboard()
def save_scientific_leaderboard(df: pd.DataFrame) -> bool:
"""Save scientific leaderboard to HuggingFace dataset."""
try:
# Clean data before saving
df_clean = df.copy()
# Ensure numeric columns are proper types
numeric_columns = [
col for col in df_clean.columns
if any(x in col for x in ["quality", "bleu", "chrf", "ci_", "samples", "pairs", "adequacy"])
]
for col in numeric_columns:
if col in df_clean.columns:
if "adequate" in col:
df_clean[col] = df_clean[col].astype(bool)
else:
df_clean[col] = pd.to_numeric(df_clean[col], errors="coerce").fillna(0.0)
# Convert to dataset
dataset = Dataset.from_pandas(df_clean)
# Push to hub
dataset.push_to_hub(
LEADERBOARD_DATASET + "-scientific",
token=HF_TOKEN,
commit_message=f"Update scientific leaderboard - {datetime.datetime.now().isoformat()[:19]}",
)
print("β
Scientific leaderboard saved successfully!")
return True
except Exception as e:
print(f"β Error saving scientific leaderboard: {e}")
return False
def add_model_to_scientific_leaderboard(
model_name: str,
author: str,
evaluation_results: Dict,
model_category: str = "community",
description: str = "",
) -> pd.DataFrame:
"""Add new model results to scientific leaderboard."""
# Load current leaderboard
df = load_scientific_leaderboard()
# Remove existing entry if present
existing_mask = df["model_name"] == model_name
if existing_mask.any():
df = df[~existing_mask]
# Extract track results
tracks = evaluation_results.get("tracks", {})
cross_track = evaluation_results.get("cross_track_analysis", {})
# Calculate scientific adequacy score
adequacy_score = calculate_scientific_adequacy_score(evaluation_results)
# Prepare new entry
new_entry = {
"submission_id": create_submission_id(),
"model_name": sanitize_model_name(model_name),
"author": author[:100] if author else "Anonymous",
"submission_date": datetime.datetime.now().isoformat(),
"model_category": model_category if model_category in MODEL_CATEGORIES else "community",
"description": description[:500] if description else "",
# Extract track-specific metrics
**extract_track_metrics(tracks),
# Statistical metadata
**extract_statistical_metadata(tracks),
# Coverage information
**extract_coverage_information(tracks),
# Adequacy flags
**extract_adequacy_flags(tracks),
# Detailed results (JSON strings)
**serialize_detailed_results(tracks, cross_track),
# Metadata
"evaluation_date": datetime.datetime.now().isoformat(),
"leaderboard_version": 2,
"scientific_adequacy_score": adequacy_score,
}
# Convert to DataFrame and append
new_row_df = pd.DataFrame([new_entry])
updated_df = pd.concat([df, new_row_df], ignore_index=True)
# Save to hub
save_scientific_leaderboard(updated_df)
return updated_df
def extract_track_metrics(tracks: Dict) -> Dict:
"""Extract primary metrics from each track."""
metrics = {}
for track_name in EVALUATION_TRACKS.keys():
track_data = tracks.get(track_name, {})
track_averages = track_data.get("track_averages", {})
# Quality score
metrics[f"{track_name}_quality"] = float(track_averages.get("quality_score", 0.0))
# BLEU score
metrics[f"{track_name}_bleu"] = float(track_averages.get("bleu", 0.0))
# ChrF score
metrics[f"{track_name}_chrf"] = float(track_averages.get("chrf", 0.0))
return metrics
def extract_statistical_metadata(tracks: Dict) -> Dict:
"""Extract confidence intervals from each track."""
metadata = {}
for track_name in EVALUATION_TRACKS.keys():
track_data = tracks.get(track_name, {})
track_statistics = track_data.get("track_statistics", {})
quality_stats = track_statistics.get("quality_score", {})
metadata[f"{track_name}_ci_lower"] = float(quality_stats.get("ci_lower", 0.0))
metadata[f"{track_name}_ci_upper"] = float(quality_stats.get("ci_upper", 0.0))
return metadata
def extract_coverage_information(tracks: Dict) -> Dict:
"""Extract coverage information from each track."""
coverage = {}
for track_name in EVALUATION_TRACKS.keys():
track_data = tracks.get(track_name, {})
summary = track_data.get("summary", {})
coverage[f"{track_name}_samples"] = int(summary.get("total_samples", 0))
coverage[f"{track_name}_pairs"] = int(summary.get("language_pairs_evaluated", 0))
return coverage
def extract_adequacy_flags(tracks: Dict) -> Dict:
"""Extract statistical adequacy flags for each track."""
adequacy = {}
for track_name in EVALUATION_TRACKS.keys():
track_data = tracks.get(track_name, {})
summary = track_data.get("summary", {})
min_required = EVALUATION_TRACKS[track_name]["min_samples_per_pair"] * summary.get("language_pairs_evaluated", 0)
is_adequate = summary.get("total_samples", 0) >= min_required
adequacy[f"{track_name}_adequate"] = bool(is_adequate)
return adequacy
def serialize_detailed_results(tracks: Dict, cross_track: Dict) -> Dict:
"""Serialize detailed results for storage."""
detailed = {}
for track_name in EVALUATION_TRACKS.keys():
track_data = tracks.get(track_name, {})
# Remove non-serializable data
safe_track_data = {}
for key, value in track_data.items():
if key != "sample_metrics": # Skip large DataFrames
safe_track_data[key] = value
detailed[f"detailed_{track_name}"] = json.dumps(safe_track_data)
detailed["cross_track_analysis"] = json.dumps(cross_track)
return detailed
def calculate_scientific_adequacy_score(evaluation_results: Dict) -> float:
"""Calculate overall scientific adequacy score (0-1)."""
tracks = evaluation_results.get("tracks", {})
adequacy_scores = []
for track_name in EVALUATION_TRACKS.keys():
track_data = tracks.get(track_name, {})
summary = track_data.get("summary", {})
if track_data.get("error"):
adequacy_scores.append(0.0)
continue
# Sample size adequacy
min_required = EVALUATION_TRACKS[track_name]["min_samples_per_pair"] * summary.get("language_pairs_evaluated", 0)
sample_adequacy = min(summary.get("total_samples", 0) / max(min_required, 1), 1.0)
# Coverage adequacy
total_possible_pairs = len(EVALUATION_TRACKS[track_name]["languages"]) * (len(EVALUATION_TRACKS[track_name]["languages"]) - 1)
coverage_adequacy = summary.get("language_pairs_evaluated", 0) / max(total_possible_pairs, 1)
# Track adequacy
track_adequacy = (sample_adequacy + coverage_adequacy) / 2
adequacy_scores.append(track_adequacy)
return float(np.mean(adequacy_scores))
def get_track_leaderboard(
df: pd.DataFrame,
track: str,
metric: str = "quality",
category_filter: str = "all",
min_adequacy: float = 0.0
) -> pd.DataFrame:
"""Get leaderboard for a specific track with filtering."""
if df.empty:
return df
track_quality_col = f"{track}_{metric}"
track_adequate_col = f"{track}_adequate"
# Ensure columns exist
if track_quality_col not in df.columns or track_adequate_col not in df.columns:
print(f"Warning: Missing columns for track {track}")
return pd.DataFrame()
# Filter by adequacy
if min_adequacy > 0:
adequacy_mask = df["scientific_adequacy_score"] >= min_adequacy
df = df[adequacy_mask]
# Filter by category
if category_filter != "all":
df = df[df["model_category"] == category_filter]
# Filter to models that have this track - fix boolean operation
# Convert to proper boolean and handle NaN values
quality_mask = pd.to_numeric(df[track_quality_col], errors='coerce') > 0
adequate_mask = df[track_adequate_col].fillna(False).astype(bool)
valid_mask = quality_mask & adequate_mask
df = df[valid_mask]
if df.empty:
return df
# Sort by track-specific metric
df = df.sort_values(track_quality_col, ascending=False).reset_index(drop=True)
return df
def prepare_track_leaderboard_display(df: pd.DataFrame, track: str) -> pd.DataFrame:
"""Prepare track-specific leaderboard for display."""
if df.empty:
return df
# Select relevant columns for this track
base_columns = ["model_name", "author", "submission_date", "model_category"]
track_columns = [
f"{track}_quality",
f"{track}_bleu",
f"{track}_chrf",
f"{track}_ci_lower",
f"{track}_ci_upper",
f"{track}_samples",
f"{track}_pairs",
f"{track}_adequate",
]
# Only include columns that exist
available_columns = [col for col in base_columns + track_columns if col in df.columns]
display_df = df[available_columns].copy()
# Format numeric columns
numeric_format = {
f"{track}_quality": "{:.4f}",
f"{track}_bleu": "{:.2f}",
f"{track}_chrf": "{:.4f}",
f"{track}_ci_lower": "{:.4f}",
f"{track}_ci_upper": "{:.4f}",
}
for col, fmt in numeric_format.items():
if col in display_df.columns:
display_df[col] = display_df[col].apply(
lambda x: fmt.format(float(x)) if pd.notnull(x) else "0.0000"
)
# Format confidence intervals
if f"{track}_ci_lower" in display_df.columns and f"{track}_ci_upper" in display_df.columns:
display_df[f"{track}_confidence_interval"] = (
"[" + display_df[f"{track}_ci_lower"] + ", " + display_df[f"{track}_ci_upper"] + "]"
)
# Remove individual CI columns for cleaner display
display_df = display_df.drop(columns=[f"{track}_ci_lower", f"{track}_ci_upper"])
# Format submission date
if "submission_date" in display_df.columns:
display_df["submission_date"] = pd.to_datetime(display_df["submission_date"]).dt.strftime("%Y-%m-%d")
# Rename columns for better display
track_name = EVALUATION_TRACKS[track]["name"].split()[0] # First word
column_renames = {
"model_name": "Model Name",
"author": "Author",
"submission_date": "Submitted",
"model_category": "Category",
f"{track}_quality": f"{track_name} Quality",
f"{track}_bleu": f"{track_name} BLEU",
f"{track}_chrf": f"{track_name} ChrF",
f"{track}_confidence_interval": "95% CI",
f"{track}_samples": "Samples",
f"{track}_pairs": "Pairs",
f"{track}_adequate": "Adequate",
}
display_df = display_df.rename(columns=column_renames)
return display_df
def get_scientific_leaderboard_stats(df: pd.DataFrame, track: str = None) -> Dict:
"""Get comprehensive statistics for the scientific leaderboard."""
if df.empty:
return {
"total_models": 0,
"models_by_category": {},
"track_statistics": {},
"adequacy_distribution": {},
"best_models_by_track": {},
}
stats = {
"total_models": len(df),
"models_by_category": df["model_category"].value_counts().to_dict(),
"adequacy_distribution": {},
"track_statistics": {},
"best_models_by_track": {},
}
# Adequacy distribution
adequacy_bins = pd.cut(
df["scientific_adequacy_score"],
bins=[0, 0.3, 0.6, 0.8, 1.0],
labels=["Poor", "Fair", "Good", "Excellent"]
)
stats["adequacy_distribution"] = adequacy_bins.value_counts().to_dict()
# Track-specific statistics
for track_name in EVALUATION_TRACKS.keys():
quality_col = f"{track_name}_quality"
adequate_col = f"{track_name}_adequate"
if quality_col in df.columns and adequate_col in df.columns:
track_models = df[df[adequate_col] & (df[quality_col] > 0)]
if len(track_models) > 0:
stats["track_statistics"][track_name] = {
"participating_models": len(track_models),
"avg_quality": float(track_models[quality_col].mean()),
"std_quality": float(track_models[quality_col].std()),
"best_quality": float(track_models[quality_col].max()),
}
# Best model for this track
best_model = track_models.loc[track_models[quality_col].idxmax()]
stats["best_models_by_track"][track_name] = {
"name": best_model["model_name"],
"category": best_model["model_category"],
"quality": float(best_model[quality_col]),
}
return stats
def perform_fair_comparison(
df: pd.DataFrame,
model_names: List[str],
shared_pairs_only: bool = True
) -> Dict:
"""Perform fair comparison between models using only shared language pairs."""
models = df[df["model_name"].isin(model_names)]
if len(models) == 0:
return {"error": "No models found"}
comparison = {
"models": list(models["model_name"]),
"fair_comparison_possible": True,
"track_comparisons": {},
"statistical_significance": {},
"recommendations": [],
}
# Check if fair comparison is possible
categories = models["model_category"].unique()
if len(categories) > 1:
comparison["recommendations"].append(
"β οΈ Comparing models from different categories - interpret results carefully"
)
# For each track, compare models
for track_name in EVALUATION_TRACKS.keys():
quality_col = f"{track_name}_quality"
adequate_col = f"{track_name}_adequate"
track_models = models[models[adequate_col] & (models[quality_col] > 0)]
if len(track_models) >= 2:
comparison["track_comparisons"][track_name] = {
"participating_models": len(track_models),
"quality_scores": dict(zip(track_models["model_name"], track_models[quality_col])),
"confidence_intervals": {},
}
# Extract confidence intervals
for _, model in track_models.iterrows():
ci_lower = model.get(f"{track_name}_ci_lower", 0)
ci_upper = model.get(f"{track_name}_ci_upper", 0)
comparison["track_comparisons"][track_name]["confidence_intervals"][model["model_name"]] = [ci_lower, ci_upper]
return comparison
def export_scientific_leaderboard(
df: pd.DataFrame,
track: str = "all",
format: str = "csv",
include_detailed: bool = False
) -> str:
"""Export scientific leaderboard in specified format."""
timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
if track != "all":
# Export specific track
export_df = prepare_track_leaderboard_display(df, track)
filename_prefix = f"salt_leaderboard_{track}_{timestamp}"
else:
# Export all tracks
if include_detailed:
export_df = df.copy()
else:
# Select essential columns
essential_columns = [
"model_name", "author", "submission_date", "model_category",
"scientific_adequacy_score"
]
# Add track-specific quality scores
for track_name in EVALUATION_TRACKS.keys():
essential_columns.extend([
f"{track_name}_quality",
f"{track_name}_adequate",
])
available_columns = [col for col in essential_columns if col in df.columns]
export_df = df[available_columns].copy()
filename_prefix = f"salt_leaderboard_scientific_{timestamp}"
# Export in specified format
if format == "csv":
filename = f"{filename_prefix}.csv"
export_df.to_csv(filename, index=False)
elif format == "json":
filename = f"{filename_prefix}.json"
export_df.to_json(filename, orient="records", indent=2)
elif format == "xlsx":
filename = f"{filename_prefix}.xlsx"
export_df.to_excel(filename, index=False)
else:
raise ValueError(f"Unsupported format: {format}")
return filename |