Spaces:
Running
on
Zero
Running
on
Zero
File size: 29,894 Bytes
a43a8dc c484979 a43a8dc 8bbeb3a a43a8dc fcfeede 2c0de48 e0d7b74 2c0de48 a43a8dc 663f8aa 2c0de48 c484979 2c0de48 a43a8dc 8bbeb3a a43a8dc c484979 a43a8dc 2c0de48 a43a8dc 2c0de48 d51c5f2 a43a8dc 2c0de48 c484979 2c0de48 c484979 2c0de48 c484979 2c0de48 c484979 2c0de48 c484979 2c0de48 c484979 2c0de48 c484979 2c0de48 c484979 2c0de48 a43a8dc c484979 803c1a2 c484979 2c0de48 c484979 2c0de48 c484979 2c0de48 c484979 2c0de48 c484979 2c0de48 e0d7b74 2c0de48 c484979 2c0de48 c484979 2c0de48 c484979 2c0de48 c484979 2c0de48 e0d7b74 2c0de48 a43a8dc c484979 8bbeb3a c484979 2c0de48 c484979 9548c9b 6537180 2c0de48 c484979 2c0de48 c484979 2c0de48 c484979 2c0de48 c484979 2c0de48 8bbeb3a c484979 8bbeb3a c484979 8bbeb3a 970d1f9 8bbeb3a 970d1f9 8bbeb3a 970d1f9 c484979 65004b8 8bbeb3a c484979 8bbeb3a c484979 8bbeb3a 970d1f9 c484979 8bbeb3a c484979 8bbeb3a c484979 e0d7b74 c484979 8bbeb3a c484979 8bbeb3a c484979 e0d7b74 c484979 e0d7b74 c484979 8bbeb3a c484979 8bbeb3a c484979 970d1f9 2c0de48 c484979 2c0de48 8bbeb3a 2c0de48 c484979 15f252d c484979 15f252d c484979 15f252d c484979 15f252d c484979 15f252d c484979 15f252d c484979 15f252d c484979 15f252d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 |
import spaces
import os
import gradio as gr
import numpy as np
import torch
from PIL import Image
import trimesh
import random
from transformers import AutoModelForImageSegmentation
from torchvision import transforms
from huggingface_hub import hf_hub_download, snapshot_download
import subprocess
import shutil
import base64
import logging
import requests
# Set up logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)
# Install additional dependencies
try:
subprocess.run("pip install spandrel==0.4.1 --no-deps", shell=True, check=True)
except Exception as e:
logger.error(f"Failed to install spandrel: {str(e)}")
raise
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
DTYPE = torch.float16
logger.info(f"Using device: {DEVICE}")
DEFAULT_FACE_NUMBER = 100000
MAX_SEED = np.iinfo(np.int32).max
TRIPOSG_REPO_URL = "https://github.com/VAST-AI-Research/TripoSG.git"
MV_ADAPTER_REPO_URL = "https://github.com/huanngzh/MV-Adapter.git"
RMBG_PRETRAINED_MODEL = "checkpoints/RMBG-1.4"
TRIPOSG_PRETRAINED_MODEL = "checkpoints/TripoSG"
TMP_DIR = os.path.join(os.path.dirname(os.path.abspath(__file__)), "tmp")
os.makedirs(TMP_DIR, exist_ok=True)
TRIPOSG_CODE_DIR = "./triposg"
if not os.path.exists(TRIPOSG_CODE_DIR):
logger.info(f"Cloning TripoSG repository to {TRIPOSG_CODE_DIR}")
os.system(f"git clone {TRIPOSG_REPO_URL} {TRIPOSG_CODE_DIR}")
MV_ADAPTER_CODE_DIR = "./mv_adapter"
if not os.path.exists(MV_ADAPTER_CODE_DIR):
logger.info(f"Cloning MV-Adapter repository to {MV_ADAPTER_CODE_DIR}")
os.system(f"git clone {MV_ADAPTER_REPO_URL} {MV_ADAPTER_CODE_DIR} && cd {MV_ADAPTER_CODE_DIR} && git checkout 7d37a97e9bc223cdb8fd26a76bd8dd46504c7c3d")
import sys
sys.path.append(TRIPOSG_CODE_DIR)
sys.path.append(os.path.join(TRIPOSG_CODE_DIR, "scripts"))
sys.path.append(MV_ADAPTER_CODE_DIR)
sys.path.append(os.path.join(MV_ADAPTER_CODE_DIR, "scripts"))
try:
from image_process import prepare_image
from briarmbg import BriaRMBG
snapshot_download("briaai/RMBG-1.4", local_dir=RMBG_PRETRAINED_MODEL)
rmbg_net = BriaRMBG.from_pretrained(RMBG_PRETRAINED_MODEL).to(DEVICE)
rmbg_net.eval()
from triposg.pipelines.pipeline_triposg import TripoSGPipeline
snapshot_download("VAST-AI/TripoSG", local_dir=TRIPOSG_PRETRAINED_MODEL)
triposg_pipe = TripoSGPipeline.from_pretrained(TRIPOSG_PRETRAINED_MODEL).to(DEVICE, DTYPE)
except Exception as e:
logger.error(f"Failed to load TripoSG models: {str(e)}")
raise
try:
NUM_VIEWS = 6
from inference_ig2mv_sdxl import prepare_pipeline, preprocess_image, remove_bg
from mvadapter.utils import get_orthogonal_camera, tensor_to_image, make_image_grid
from mvadapter.utils.render import NVDiffRastContextWrapper, load_mesh, render
mv_adapter_pipe = prepare_pipeline(
base_model="stabilityai/stable-diffusion-xl-base-1.0",
vae_model="madebyollin/sdxl-vae-fp16-fix",
unet_model=None,
lora_model=None,
adapter_path="huanngzh/mv-adapter",
scheduler=None,
num_views=NUM_VIEWS,
device=DEVICE,
dtype=torch.float16,
)
birefnet = AutoModelForImageSegmentation.from_pretrained(
"ZhengPeng7/BiRefNet", trust_remote_code=True
).to(DEVICE)
transform_image = transforms.Compose(
[
transforms.Resize((1024, 1024)),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
]
)
remove_bg_fn = lambda x: remove_bg(x, birefnet, transform_image, DEVICE)
except Exception as e:
logger.error(f"Failed to load MV-Adapter models: {str(e)}")
raise
try:
if not os.path.exists("checkpoints/RealESRGAN_x2plus.pth"):
hf_hub_download("dtarnow/UPscaler", filename="RealESRGAN_x2plus.pth", local_dir="checkpoints")
if not os.path.exists("checkpoints/big-lama.pt"):
subprocess.run("wget -P checkpoints/ https://github.com/Sanster/models/releases/download/add_big_lama/big-lama.pt", shell=True, check=True)
except Exception as e:
logger.error(f"Failed to download checkpoints: {str(e)}")
raise
def get_random_hex():
random_bytes = os.urandom(8)
random_hex = random_bytes.hex()
return random_hex
@spaces.GPU(duration=5)
def run_full(image: str, seed: int = 0, num_inference_steps: int = 50, guidance_scale: float = 7.5, simplify: bool = True, target_face_num: int = DEFAULT_FACE_NUMBER, req=None):
try:
image_seg = prepare_image(image, bg_color=np.array([1.0, 1.0, 1.0]), rmbg_net=rmbg_net)
outputs = triposg_pipe(
image=image_seg,
generator=torch.Generator(device=triposg_pipe.device).manual_seed(seed),
num_inference_steps=num_inference_steps,
guidance_scale=guidance_scale
).samples[0]
logger.info("Mesh extraction done")
mesh = trimesh.Trimesh(outputs[0].astype(np.float32), np.ascontiguousarray(outputs[1]))
if simplify:
logger.info("Starting mesh simplification")
from utils import simplify_mesh
mesh = simplify_mesh(mesh, target_face_num)
save_dir = os.path.join(TMP_DIR, "examples")
os.makedirs(save_dir, exist_ok=True)
mesh_path = os.path.join(save_dir, f"polygenixai_{get_random_hex()}.glb")
mesh.export(mesh_path)
logger.info(f"Saved mesh to {mesh_path}")
torch.cuda.empty_cache()
height, width = 1920, 1080 # Set resolution for YouTube Shorts, TikTok, Reels
cameras = get_orthogonal_camera(
elevation_deg=[0, 0, 0, 0, 89.99, -89.99],
distance=[1.8] * NUM_VIEWS,
left=-0.55,
right=0.55,
bottom=-0.55,
top=0.55,
azimuth_deg=[x - 90 for x in [0, 90, 180, 270, 180, 180]],
device=DEVICE,
)
ctx = NVDiffRastContextWrapper(device=DEVICE, context_type="cuda")
mesh = load_mesh(mesh_path, rescale=True, device=DEVICE)
render_out = render(
ctx,
mesh,
cameras,
height=height,
width=width,
render_attr=False,
normal_background=0.0,
)
control_images = (
(render_out.pos + 0.5).clamp(0, 1) # Use only position map, remove normal map
.permute(0, 3, 1, 2)
.to(DEVICE)
)
image = Image.open(image)
image = remove_bg_fn(image)
image = preprocess_image(image, height, width)
pipe_kwargs = {}
if seed != -1 and isinstance(seed, int):
pipe_kwargs["generator"] = torch.Generator(device=DEVICE).manual_seed(seed)
images = mv_adapter_pipe(
"high quality",
height=height,
width=width,
num_inference_steps=15,
guidance_scale=3.0,
num_images_per_prompt=NUM_VIEWS,
control_image=control_images,
control_conditioning_scale=1.0,
reference_image=image,
reference_conditioning_scale=1.0,
negative_prompt="watermark, ugly, deformed, noisy, blurry, low contrast",
cross_attention_kwargs={"scale": 1.0},
**pipe_kwargs,
).images
torch.cuda.empty_cache()
os.makedirs(save_dir, exist_ok=True)
mv_image_path = os.path.join(save_dir, f"mv_adapter_{get_random_hex()}.png")
make_image_grid(images, rows=1).save(mv_image_path)
from texture import TexturePipeline, ModProcessConfig
texture_pipe = TexturePipeline(
upscaler_ckpt_path="checkpoints/RealESRGAN_x2plus.pth",
inpaint_ckpt_path="checkpoints/big-lama.pt",
device=DEVICE,
)
textured_glb_path = texture_pipe(
mesh_path=mesh_path,
save_dir=save_dir,
save_name=f"polygenixai_texture_mesh_{get_random_hex()}.glb",
uv_unwarp=True,
uv_size=4096,
rgb_path=mv_image_path,
rgb_process_config=ModProcessConfig(view_upscale=True, inpaint_mode="view"),
camera_azimuth_deg=[x - 90 for x in [0, 90, 180, 270, 180, 180]],
)
return image_seg, mesh_path, textured_glb_path
except Exception as e:
logger.error(f"Error in run_full: {str(e)}")
raise
def gradio_generate(image: str, seed: int = 0, num_inference_steps: int = 50, guidance_scale: float = 7.5, simplify: bool = True, target_face_num: int = DEFAULT_FACE_NUMBER):
try:
logger.info("Starting gradio_generate")
api_key = os.getenv("POLYGENIX_API_KEY", "your-secret-api-key")
request = gr.Request()
if not request.headers.get("x-api-key") == api_key:
logger.error("Invalid API key")
raise ValueError("Invalid API key")
if image.startswith("data:image"):
logger.info("Processing base64 image")
base64_string = image.split(",")[1]
image_data = base64.b64decode(base64_string)
temp_image_path = os.path.join(TMP_DIR, f"input_{get_random_hex()}.png")
with open(temp_image_path, "wb") as f:
f.write(image_data)
else:
temp_image_path = image
if not os.path.exists(temp_image_path):
logger.error(f"Image file not found: {temp_image_path}")
raise ValueError("Invalid or missing image file")
image_seg, mesh_path, textured_glb_path = run_full(temp_image_path, seed, num_inference_steps, guidance_scale, simplify, target_face_num, req=None)
session_hash = os.path.basename(os.path.dirname(textured_glb_path))
logger.info(f"Generated model at /files/{session_hash}/{os.path.basename(textured_glb_path)}")
return {"file_url": f"/files/{session_hash}/{os.path.basename(textured_glb_path)}"}
except Exception as e:
logger.error(f"Error in gradio_generate: {str(e)}")
raise
def start_session(req: gr.Request):
try:
save_dir = os.path.join(TMP_DIR, str(req.session_hash))
os.makedirs(save_dir, exist_ok=True)
logger.info(f"Started session, created directory: {save_dir}")
except Exception as e:
logger.error(f"Error in start_session: {str(e)}")
raise
def end_session(req: gr.Request):
try:
save_dir = os.path.join(TMP_DIR, str(req.session_hash))
shutil.rmtree(save_dir)
logger.info(f"Ended session, removed directory: {save_dir}")
except Exception as e:
logger.error(f"Error in end_session: {str(e)}")
raise
def get_random_seed(randomize_seed, seed):
try:
if randomize_seed:
seed = random.randint(0, MAX_SEED)
logger.info(f"Generated seed: {seed}")
return seed
except Exception as e:
logger.error(f"Error in get_random_seed: {str(e)}")
raise
def download_image(url: str, save_path: str) -> str:
try:
logger.info(f"Downloading image from {url}")
response = requests.get(url, stream=True)
response.raise_for_status()
with open(save_path, "wb") as f:
for chunk in response.iter_content(chunk_size=8192):
f.write(chunk)
logger.info(f"Saved image to {save_path}")
return save_path
except Exception as e:
logger.error(f"Failed to download image from {url}: {str(e)}")
raise
@spaces.GPU()
@torch.no_grad()
def run_segmentation(image):
try:
logger.info("Running segmentation")
if isinstance(image, dict):
image_path = image.get("path") or image.get("url")
if not image_path:
logger.error("Invalid image input: no path or URL provided")
raise ValueError("Invalid image input: no path or URL provided")
if image_path.startswith("http"):
temp_image_path = os.path.join(TMP_DIR, f"input_{get_random_hex()}.png")
image_path = download_image(image_path, temp_image_path)
elif isinstance(image, str) and image.startswith("http"):
temp_image_path = os.path.join(TMP_DIR, f"input_{get_random_hex()}.png")
image_path = download_image(image, temp_image_path)
else:
image_path = image
if not isinstance(image, (str, bytes)) or (isinstance(image, str) and not os.path.exists(image)):
logger.error(f"Invalid image type or path: {type(image)}")
raise ValueError(f"Expected str (path/URL), bytes, or FileData dict, got {type(image)}")
image = prepare_image(image_path, bg_color=np.array([1.0, 1.0, 1.0]), rmbg_net=rmbg_net)
logger.info("Segmentation complete")
return image
except Exception as e:
logger.error(f"Error in run_segmentation: {str(e)}")
raise
@spaces.GPU(duration=5)
@torch.no_grad()
def image_to_3d(
image,
seed: int,
num_inference_steps: int,
guidance_scale: float,
simplify: bool,
target_face_num: int,
req: gr.Request
):
try:
logger.info("Running image_to_3d")
if isinstance(image, dict):
image_path = image.get("path") or image.get("url")
if not image_path:
logger.error("Invalid image input: no path or URL provided")
raise ValueError("Invalid image input: no path or URL provided")
image = Image.open(image_path)
elif not isinstance(image, Image.Image):
logger.error(f"Invalid image type: {type(image)}")
raise ValueError(f"Expected PIL Image or FileData dict, got {type(image)}")
outputs = triposg_pipe(
image=image,
generator=torch.Generator(device=triposg_pipe.device).manual_seed(seed),
num_inference_steps=num_inference_steps,
guidance_scale=guidance_scale
).samples[0]
logger.info("Mesh extraction done")
mesh = trimesh.Trimesh(outputs[0].astype(np.float32), np.ascontiguousarray(outputs[1]))
if simplify:
logger.info("Starting mesh simplification")
try:
from utils import simplify_mesh
mesh = simplify_mesh(mesh, target_face_num)
except ImportError as e:
logger.error(f"Failed to import simplify_mesh: {str(e)}")
raise
save_dir = os.path.join(TMP_DIR, str(req.session_hash))
os.makedirs(save_dir, exist_ok=True)
mesh_path = os.path.join(save_dir, f"polygenixai_{get_random_hex()}.glb")
mesh.export(mesh_path)
logger.info(f"Saved mesh to {mesh_path}")
torch.cuda.empty_cache()
return mesh_path
except Exception as e:
logger.error(f"Error in image_to_3d: {str(e)}")
raise
@spaces.GPU(duration=5)
@torch.no_grad()
def run_texture(image: Image, mesh_path: str, seed: int, req: gr.Request):
try:
logger.info("Running texture generation")
height, width = 1920, 1080 # Set resolution for YouTube Shorts, TikTok, Reels
cameras = get_orthogonal_camera(
elevation_deg=[0, 0, 0, 0, 89.99, -89.99],
distance=[1.8] * NUM_VIEWS,
left=-0.55,
right=0.55,
bottom=-0.55,
top=0.55,
azimuth_deg=[x - 90 for x in [0, 90, 180, 270, 180, 180]],
device=DEVICE,
)
ctx = NVDiffRastContextWrapper(device=DEVICE, context_type="cuda")
mesh = load_mesh(mesh_path, rescale=True, device=DEVICE)
render_out = render(
ctx,
mesh,
cameras,
height=height,
width=width,
render_attr=False,
normal_background=0.0,
)
control_images = (
(render_out.pos + 0.5).clamp(0, 1) # Use only position map, remove normal map
.permute(0, 3, 1, 2)
.to(DEVICE)
)
image = Image.open(image)
image = remove_bg_fn(image)
image = preprocess_image(image, height, width)
pipe_kwargs = {}
if seed != -1 and isinstance(seed, int):
pipe_kwargs["generator"] = torch.Generator(device=DEVICE).manual_seed(seed)
images = mv_adapter_pipe(
"high quality",
height=height,
width=width,
num_inference_steps=15,
guidance_scale=3.0,
num_images_per_prompt=NUM_VIEWS,
control_image=control_images,
control_conditioning_scale=1.0,
reference_image=image,
reference_conditioning_scale=1.0,
negative_prompt="watermark, ugly, deformed, noisy, blurry, low contrast",
cross_attention_kwargs={"scale": 1.0},
**pipe_kwargs,
).images
torch.cuda.empty_cache()
save_dir = os.path.join(TMP_DIR, str(req.session_hash))
os.makedirs(save_dir, exist_ok=True)
mv_image_path = os.path.join(save_dir, f"mv_adapter_{get_random_hex()}.png")
make_image_grid(images, rows=1).save(mv_image_path)
from texture import TexturePipeline, ModProcessConfig
texture_pipe = TexturePipeline(
upscaler_ckpt_path="checkpoints/RealESRGAN_x2plus.pth",
inpaint_ckpt_path="checkpoints/big-lama.pt",
device=DEVICE,
)
textured_glb_path = texture_pipe(
mesh_path=mesh_path,
save_dir=save_dir,
save_name=f"polygenixai_texture_mesh_{get_random_hex()}.glb",
uv_unwarp=True,
uv_size=4096,
rgb_path=mv_image_path,
rgb_process_config=ModProcessConfig(view_upscale=True, inpaint_mode="view"),
camera_azimuth_deg=[x - 90 for x in [0, 90, 180, 270, 180, 180]],
)
logger.info(f"Textured model saved to {textured_glb_path}")
return textured_glb_path
except Exception as e:
logger.error(f"Error in run_texture: {str(e)}")
raise
@spaces.GPU(duration=5)
@torch.no_grad()
def run_full_api(image, seed: int = 0, num_inference_steps: int = 50, guidance_scale: float = 7.5, simplify: bool = True, target_face_num: int = DEFAULT_FACE_NUMBER, req: gr.Request = None):
try:
logger.info("Running run_full_api")
if isinstance(image, dict):
image_path = image.get("path") or image.get("url")
if not image_path:
logger.error("Invalid image input: no path or URL provided")
raise ValueError("Invalid image input: no path or URL provided")
if image_path.startswith("http"):
temp_image_path = os.path.join(TMP_DIR, f"input_{get_random_hex()}.png")
image_path = download_image(image_path, temp_image_path)
elif isinstance(image, str) and image.startswith("http"):
temp_image_path = os.path.join(TMP_DIR, f"input_{get_random_hex()}.png")
image_path = download_image(image, temp_image_path)
else:
image_path = image
if not isinstance(image, str) or not os.path.exists(image_path):
logger.error(f"Invalid image path: {image_path}")
raise ValueError(f"Invalid image path: {image_path}")
image_seg, mesh_path, textured_glb_path = run_full(image_path, seed, num_inference_steps, guidance_scale, simplify, target_face_num, req)
session_hash = os.path.basename(os.path.dirname(textured_glb_path))
logger.info(f"Generated textured model at /files/{session_hash}/{os.path.basename(textured_glb_path)}")
return {"file_url": f"/files/{session_hash}/{os.path.basename(textured_glb_path)}"}
except Exception as e:
logger.error(f"Error in run_full_api: {str(e)}")
raise
# Define Gradio API endpoint
try:
logger.info("Initializing Gradio API interface")
api_interface = gr.Interface(
fn=gradio_generate,
inputs=[
gr.Image(type="filepath", label="Image"),
gr.Number(label="Seed", value=0, precision=0),
gr.Number(label="Inference Steps", value=50, precision=0),
gr.Number(label="Guidance Scale", value=7.5),
gr.Checkbox(label="Simplify Mesh", value=True),
gr.Number(label="Target Face Number", value=DEFAULT_FACE_NUMBER, precision=0)
],
outputs="json",
api_name="/api/generate"
)
logger.info("Gradio API interface initialized successfully")
except Exception as e:
logger.error(f"Failed to initialize Gradio API interface: {str(e)}")
raise
HEADER = """
# 🌌 PolyGenixAI: Craft 3D Worlds with Cosmic Precision
## Unleash Infinite Creativity with AI-Powered 3D Generation by AnvilInteractive Solutions
<p style="font-size: 1.1em; color: #A78BFA;">By <a href="https://www.anvilinteractive.com/" style="color: #A78BFA; text-decoration: none; font-weight: bold;">AnvilInteractive Solutions</a></p>
## 🚀 Launch Your Creation:
1. **Upload an Image** (clear, single-object images shine brightest)
2. **Choose a Style Filter** to infuse your unique vision
3. Click **Generate 3D Model** to sculpt your mesh
4. Click **Apply Texture** to bring your model to life
5. **Download GLB** to share your masterpiece
<p style="font-size: 0.9em; margin-top: 10px; color: #D1D5DB;">Powered by cutting-edge AI and multi-view technology from AnvilInteractive Solutions. Join our <a href="https://www.anvilinteractive.com/community" style="color: #A78BFA; text-decoration: none;">PolyGenixAI Community</a> to connect with creators and spark inspiration.</p>
<style>
@import url('https://fonts.googleapis.com/css2?family=Inter:wght@400;600;700&display=swap');
body {
background-color: #1A1A1A !important;
font-family: 'Inter', sans-serif !important;
color: #D1D5DB !important;
}
.gr-panel {
background-color: #2D2D2D !important;
border: 1px solid #7C3AED !important;
border-radius: 12px !important;
padding: 20px !important;
box-shadow: 0 4px 10px rgba(124, 58, 237, 0.2) !important;
}
.gr-button-primary {
background: linear-gradient(45deg, #7C3AED, #A78BFA) !important;
color: white !important;
border: none !important;
border-radius: 8px !important;
padding: 12px 24px !important;
font-weight: 600 !important;
transition: transform 0.2s, box-shadow 0.2s !important;
}
.gr-button-primary:hover {
transform: translateY(-2px) !important;
box-shadow: 0 4px 12px rgba(124, 58, 237, 0.5) !important;
}
.gr-button-secondary {
background-color: #4B4B4B !important;
color: #D1D5DB !important;
border: 1px solid #A78BFA !important;
border-radius: 8px !important;
padding: 10px 20px !important;
transition: transform 0.2s !important;
}
.gr-button-secondary:hover {
transform: translateY(-1px) !important;
background-color: #6B6B6B !important;
}
.gr-accordion {
background-color: #2D2D2D !important;
border-radius: 8px !important;
border: 1px solid #7C3AED !important;
}
.gr-tab {
background-color: #2D2D2D !important;
color: #A78BFA !important;
border: 1px solid #7C3AED !important;
border-radius: 8px !important;
margin: 5px !important;
}
.gr-tab:hover, .gr-tab-selected {
background: linear-gradient(45deg, #7C3AED, #A78BFA) !important;
color: white !important;
}
.gr-slider input[type=range]::-webkit-slider-thumb {
background-color: #7C3AED !important;
border: 2px solid #A78BFA !important;
}
.gr-dropdown {
background-color: #2D2D2D !important;
color: #D1D5DB !important;
border: 1px solid #A78BFA !important;
border-radius: 8px !important;
}
h1, h3 {
color: #A78BFA !important;
text-shadow: 0 0 10px rgba(124, 58, 237, 0.5) !important;
}
</style>
"""
# Gradio web interface
try:
logger.info("Initializing Gradio Blocks interface")
with gr.Blocks(title="PolyGenixAI", css="body { background-color: #1A1A1A; } .gr-panel { background-color: #2D2D2D; }") as demo:
gr.Markdown(HEADER)
with gr.Tabs(elem_classes="gr-tab"):
with gr.Tab("Create 3D Model"):
with gr.Row():
with gr.Column(scale=1):
image_prompts = gr.Image(label="Upload Image", type="filepath", height=300, elem_classes="gr-panel")
seg_image = gr.Image(label="Preview Segmentation", type="pil", format="png", interactive=False, height=300, elem_classes="gr-panel")
with gr.Accordion("Style & Settings", open=True, elem_classes="gr-accordion"):
style_filter = gr.Dropdown(
choices=["None", "Realistic", "Fantasy", "Cartoon", "Sci-Fi", "Vintage", "Cosmic", "Neon"],
label="Style Filter",
value="None",
info="Select a style to inspire your 3D model (optional)",
elem_classes="gr-dropdown"
)
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
elem_classes="gr-slider"
)
randomize_seed = gr.Checkbox(label="Randomize Seed", value=True)
num_inference_steps = gr.Slider(
label="Inference Steps",
minimum=8,
maximum=50,
step=1,
value=50,
info="Higher steps enhance detail but increase processing time",
elem_classes="gr-slider"
)
guidance_scale = gr.Slider(
label="Guidance Scale",
minimum=0.0,
maximum=20.0,
step=0.1,
value=7.0,
info="Controls adherence to input image",
elem_classes="gr-slider"
)
reduce_face = gr.Checkbox(label="Simplify Mesh", value=True)
target_face_num = gr.Slider(
maximum=1000000,
minimum=10000,
value=DEFAULT_FACE_NUMBER,
label="Target Face Number",
info="Adjust mesh complexity for performance",
elem_classes="gr-slider"
)
gen_button = gr.Button("Generate 3D Model", variant="primary", elem_classes="gr-button-primary")
gen_texture_button = gr.Button("Apply Texture", variant="secondary", interactive=False, elem_classes="gr-button-secondary")
with gr.Column(scale=1):
model_output = gr.Model3D(label="3D Model Preview", interactive=False, height=400, elem_classes="gr-panel")
textured_model_output = gr.Model3D(label="Textured 3D Model", interactive=False, height=400, elem_classes="gr-panel")
download_button = gr.Button("Download GLB", variant="secondary", elem_classes="gr-button-secondary")
with gr.Tab("Cosmic Gallery"):
gr.Markdown("### Discover Stellar Creations")
gr.Examples(
examples=[
f"{TRIPOSG_CODE_DIR}/assets/example_data/{image}"
for image in os.listdir(f"{TRIPOSG_CODE_DIR}/assets/example_data")
],
fn=run_full,
inputs=[image_prompts],
outputs=[seg_image, model_output, textured_model_output],
cache_examples=True,
)
gr.Markdown("Connect with creators in our <a href='https://www.anvilinteractive.com/community' style='color: #A78BFA; text-decoration: none;'>PolyGenixAI Cosmic Community</a>!")
gen_button.click(
run_segmentation,
inputs=[image_prompts],
outputs=[seg_image]
).then(
get_random_seed,
inputs=[randomize_seed, seed],
outputs=[seed],
).then(
image_to_3d,
inputs=[
seg_image,
seed,
num_inference_steps,
guidance_scale,
reduce_face,
target_face_num
],
outputs=[model_output]
).then(lambda: gr.Button(interactive=True), outputs=[gen_texture_button])
gen_texture_button.click(
run_texture,
inputs=[image_prompts, model_output, seed],
outputs=[textured_model_output]
)
demo.load(start_session)
demo.unload(end_session)
logger.info("Gradio Blocks interface initialized successfully")
except Exception as e:
logger.error(f"Failed to initialize Gradio Blocks interface: {str(e)}")
raise
if __name__ == "__main__":
try:
logger.info("Launching Gradio application")
demo.launch(server_name="0.0.0.0", server_port=7860, show_error=True)
logger.info("Gradio application launched successfully")
except Exception as e:
logger.error(f"Failed to launch Gradio application: {str(e)}")
raise |