File size: 3,376 Bytes
8749bfc
6bc525e
c55b851
b7568df
70a0a43
b7568df
 
 
 
 
 
70a0a43
4ee3479
bc82231
8749bfc
 
 
 
bc82231
 
 
 
8749bfc
bc82231
8749bfc
 
bc82231
8749bfc
 
bc82231
 
 
 
8749bfc
bc82231
 
 
 
 
 
 
 
 
8749bfc
70a0a43
 
 
 
cdafbc0
 
d3047d7
70a0a43
8749bfc
bc82231
70a0a43
c55b851
000e1d3
 
 
c55b851
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bc82231
c55b851
 
 
 
 
 
 
 
 
bc82231
c55b851
bc82231
000e1d3
bc82231
8749bfc
c55b851
 
 
8749bfc
c55b851
 
8749bfc
c55b851
8749bfc
 
 
 
bc82231
 
 
 
8749bfc
 
 
bc82231
 
8749bfc
bc82231
8749bfc
bc82231
 
 
 
 
8749bfc
 
bc82231
8749bfc
bc82231
8749bfc
bc82231
8749bfc
bc82231
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
import gradio as gr

from PIL import Image
# import pickle
import json
# import numpy as np
# from fastapi import FastAPI,Response
# from sklearn.metrics import accuracy_score, f1_score
# import prometheus_client as prom
# import pandas as pd
# import uvicorn
import os
from transformers import VisionEncoderDecoderModel,pipeline, ViTImageProcessor, AutoTokenizer
import torch


#model

# loaded_model = pickle.load(open(save_file_name, 'rb'))

# app=FastAPI()


# test_data=pd.read_csv("test.csv")


# f1_metric = prom.Gauge('death_f1_score', 'F1 score for test samples')

# Function for updating metrics
# def update_metrics():
#     test = test_data.sample(20)
#     X = test.iloc[:, :-1].values
#     y = test['DEATH_EVENT'].values
    
#     # test_text = test['Text'].values
#     test_pred = loaded_model.predict(X)
#     #pred_labels = [int(pred['label'].split("_")[1]) for pred in test_pred]

#     f1 = f1_score( y , test_pred).round(3)

#     #f1 = f1_score(test['labels'], pred_labels).round(3)

#     f1_metric.set(f1)

from model.config import encoder,decoder

# with open('model/config.json', 'r') as file:
#     config = json.load(file)


print(encoder._name_or_path,decoder._name_or_path,)
model = VisionEncoderDecoderModel.from_encoder_decoder_pretrained(encoder._name_or_path,decoder._name_or_path)


tokenizer = AutoTokenizer.from_pretrained(decoder._name_or_path)
tokenizer.pad_token = tokenizer.unk_token



# feature_extractor = ViTImageProcessor.from_pretrained("model")

# cap_model = VisionEncoderDecoderModel.from_pretrained("model")

# tokenizer = AutoTokenizer.from_pretrained("model")









# device = "cuda" if torch.cuda.is_available() else "cpu"

# cap_model.to(device)

# def generate_caption(model, image, tokenizer=None):

    
#     generated_ids = model.generate(pixel_values=inputs.pixel_values)
#     print("generated_ids",generated_ids)

#     if tokenizer is not None:
#         print("tokenizer not null--",tokenizer)
#         generated_caption = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
#     else:
#         print("tokenizer null--",tokenizer)
#         generated_caption = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
   
#     return generated_caption

def predict_event(image):
    

    img =  Image.open(image).convert("RGB")

    generated_caption = tokenizer.decode(model.generate(feature_extractor(img, return_tensors="pt").pixel_values.to("cuda"))[0])

    # caption_vitgpt = generate_caption(model, image)
    #caption_vitgpt = generate_caption(feature_extractor, cap_model, image, tokenizer)

    return '\033[96m' +generated_caption[:85]+ '\033[0m'




# @app.get("/metrics")
# async def get_metrics():
#     update_metrics()
#     return Response(media_type="text/plain", content= prom.generate_latest())



title = "capstone"
description = "final capstone"

out_response = gr.outputs.Textbox(label="Caption generated by ViT+GPT-2")

iface = gr.Interface(fn=predict_event, 
                         inputs=gr.inputs.Image(type="pil"),
                         outputs=out_response,
                         enable_queue=True)
    


# app = gr.mount_gradio_app(app, iface, path="/")

iface.launch(server_name = "0.0.0.0", server_port = 8001)

# if __name__ == "__main__":
    # Use this for debugging purposes only
 
    # uvicorn.run(app, host="0.0.0.0", port=8001)