Spaces:
Sleeping
Sleeping
File size: 10,917 Bytes
cf10c85 38db139 9271377 739c95c cf10c85 07ceb61 cf10c85 9271377 cf10c85 739c95c dbdbe8c cf10c85 3bdc160 739c95c cf10c85 9271377 8ce83ce 9271377 8ce83ce cf10c85 41abbcb cf10c85 9271377 41abbcb cf10c85 41abbcb 9271377 41abbcb cf10c85 739c95c 4f6bd49 9271377 4f6bd49 38db139 4f6bd49 739c95c 38db139 4f6bd49 cf10c85 4f6bd49 cf10c85 4f6bd49 cf10c85 4f6bd49 7e1ea76 4f6bd49 739c95c 4f6bd49 7e1ea76 739c95c 4f6bd49 cf10c85 4f6bd49 739c95c 38db139 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 |
import os
import feedparser
from langchain.vectorstores import Chroma
from langchain.embeddings import HuggingFaceEmbeddings
from langchain.docstore.document import Document
import logging
from huggingface_hub import HfApi, login, snapshot_download
import shutil
import rss_feeds
from datetime import datetime
import dateutil.parser
import hashlib
import json
import re
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
LOCAL_DB_DIR = "chroma_db"
#RSS_FEEDS = rss_feeds.RSS_FEEDS
FEEDS_FILE = "rss_feeds.json"
COLLECTION_NAME = "news_articles"
HF_API_TOKEN = os.getenv("HF_TOKEN")
REPO_ID = "broadfield-dev/news-rag-db"
login(token=HF_API_TOKEN)
hf_api = HfApi()
def get_embedding_model():
if not hasattr(get_embedding_model, "model"):
get_embedding_model.model = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")
return get_embedding_model.model
def clean_text(text):
if not text or not isinstance(text, str):
return ""
text = re.sub(r'<.*?>', '', text)
text = ' '.join(text.split())
return text.strip().lower()
def fetch_rss_feeds():
articles = []
seen_keys = set()
try:
with open(FEEDS_FILE, 'r') as f:
feed_categories = json.load(f)
except FileNotFoundError:
logger.error(f"{FEEDS_FILE} not found. No feeds to process.")
return []
for category, feeds in feed_categories.items():
for feed_info in feeds:
feed_url = feed_info.get("url")
if not feed_url:
logger.warning(f"Skipping feed with no URL in category '{category}'")
continue
try:
logger.info(f"Fetching {feed_url}")
feed = feedparser.parse(feed_url)
if feed.bozo:
logger.warning(f"Parse error for {feed_url}: {feed.bozo_exception}")
continue
article_count = 0
for entry in feed.entries:
if article_count >= MAX_ARTICLES_PER_FEED:
break
title_raw = entry.get("title", "No Title")
link = entry.get("link", "")
description = entry.get("summary", entry.get("description", ""))
clean_title_val = clean_text(title_raw)
clean_desc_val = clean_text(description)
if not clean_desc_val:
continue
published = "Unknown Date"
for date_field in ["published", "updated", "created", "pubDate"]:
if date_field in entry:
try:
parsed_date = dateutil.parser.parse(entry[date_field])
published = parsed_date.strftime("%Y-%m-%d %H:%M:%S")
break
except (ValueError, TypeError):
continue
description_hash = hashlib.sha256(clean_desc_val.encode('utf-8')).hexdigest()
key = f"{clean_title_val}|{link}|{published}|{description_hash}"
if key not in seen_keys:
seen_keys.add(key)
image = "svg"
for img_source in [
lambda e: e.get("media_content", [{}])[0].get("url") if e.get("media_content") else "",
lambda e: e.get("media_thumbnail", [{}])[0].get("url") if e.get("media_thumbnail") else "",
lambda e: e.get("enclosure", {}).get("url") if e.get("enclosure") else "",
lambda e: next((lnk.get("href") for lnk in e.get("links", []) if lnk.get("type", "").startswith("image")), ""),
]:
try:
img = img_source(entry)
if img and img.strip():
image = img
break
except (IndexError, AttributeError, TypeError):
continue
articles.append({
"title": title_raw,
"link": link,
"description": clean_desc_val,
"published": published,
"category": category,
"image": image,
})
article_count += 1
except Exception as e:
logger.error(f"Error fetching {feed_url}: {e}")
logger.info(f"Total unique articles fetched: {len(articles)}")
return articles
def categorize_feed(url):
if not url or not isinstance(url, str):
logger.warning(f"Invalid URL provided for categorization: {url}")
return "Uncategorized"
url = url.lower().strip()
logger.debug(f"Categorizing URL: {url}")
if any(keyword in url for keyword in ["nature", "science.org", "arxiv.org", "plos.org", "annualreviews.org", "journals.uchicago.edu", "jneurosci.org", "cell.com", "nejm.org", "lancet.com"]):
return "Academic Papers"
elif any(keyword in url for keyword in ["reuters.com/business", "bloomberg.com", "ft.com", "marketwatch.com", "cnbc.com", "foxbusiness.com", "wsj.com", "bworldonline.com", "economist.com", "forbes.com"]):
return "Business"
elif any(keyword in url for keyword in ["investing.com", "cnbc.com/market", "marketwatch.com/market", "fool.co.uk", "zacks.com", "seekingalpha.com", "barrons.com", "yahoofinance.com"]):
return "Stocks & Markets"
elif any(keyword in url for keyword in ["whitehouse.gov", "state.gov", "commerce.gov", "transportation.gov", "ed.gov", "dol.gov", "justice.gov", "federalreserve.gov", "occ.gov", "sec.gov", "bls.gov", "usda.gov", "gao.gov", "cbo.gov", "fema.gov", "defense.gov", "hhs.gov", "energy.gov", "interior.gov"]):
return "Federal Government"
elif any(keyword in url for keyword in ["weather.gov", "metoffice.gov.uk", "accuweather.com", "weatherunderground.com", "noaa.gov", "wunderground.com", "climate.gov", "ecmwf.int", "bom.gov.au"]):
return "Weather"
elif any(keyword in url for keyword in ["data.worldbank.org", "imf.org", "un.org", "oecd.org", "statista.com", "kff.org", "who.int", "cdc.gov", "bea.gov", "census.gov", "fdic.gov"]):
return "Data & Statistics"
elif any(keyword in url for keyword in ["nasa", "spaceweatherlive", "space", "universetoday", "skyandtelescope", "esa"]):
return "Space"
elif any(keyword in url for keyword in ["sciencedaily", "quantamagazine", "smithsonianmag", "popsci", "discovermagazine", "scientificamerican", "newscientist", "livescience", "atlasobscura"]):
return "Science"
elif any(keyword in url for keyword in ["wired", "techcrunch", "arstechnica", "gizmodo", "theverge"]):
return "Tech"
elif any(keyword in url for keyword in ["horoscope", "astrostyle"]):
return "Astrology"
elif any(keyword in url for keyword in ["cnn_allpolitics", "bbci.co.uk/news/politics", "reuters.com/arc/outboundfeeds/newsletter-politics", "politico.com/rss/politics", "thehill"]):
return "Politics"
elif any(keyword in url for keyword in ["weather", "swpc.noaa.gov", "foxweather"]):
return "Earth Weather"
elif "vogue" in url:
return "Lifestyle"
elif any(keyword in url for keyword in ["phys.org", "aps.org", "physicsworld"]):
return "Physics"
else:
logger.warning(f"No matching category found for URL: {url}")
return "Uncategorized"
def process_and_store_articles(articles):
vector_db = Chroma(
persist_directory=LOCAL_DB_DIR,
embedding_function=get_embedding_model(),
#embedding_function=embedding_model,
collection_name=COLLECTION_NAME
)
try:
existing_ids = set(vector_db.get(include=[])["ids"])
logger.info(f"Loaded {len(existing_ids)} existing document IDs from {LOCAL_DB_DIR}.")
except Exception:
existing_ids = set()
logger.info("No existing DB found or it is empty. Starting fresh.")
docs_to_add = []
ids_to_add = []
for article in articles:
cleaned_title = clean_text(article["title"])
cleaned_link = clean_text(article["link"])
doc_id = f"{cleaned_title}|{cleaned_link}|{article['published']}"
if doc_id in existing_ids:
continue
metadata = {
"title": article["title"],
"link": article["link"],
"original_description": article["description"],
"published": article["published"],
"category": article["category"],
"image": article["image"],
}
doc = Document(page_content=clean_text(article["description"]), metadata=metadata)
docs_to_add.append(doc)
ids_to_add.append(doc_id)
existing_ids.add(doc_id)
if docs_to_add:
try:
vector_db.add_documents(documents=docs_to_add, ids=ids_to_add)
vector_db.persist()
logger.info(f"Added {len(docs_to_add)} new articles to DB. Total in DB: {vector_db._collection.count()}")
except Exception as e:
logger.error(f"Error storing articles: {e}")
def download_from_hf_hub():
if not os.path.exists(LOCAL_DB_DIR):
try:
logger.info(f"Downloading Chroma DB from {REPO_ID} to {LOCAL_DB_DIR}...")
snapshot_download(
repo_id=REPO_ID,
repo_type="dataset",
local_dir=".",
local_dir_use_symlinks=False,
allow_patterns=f"{LOCAL_DB_DIR}/**",
token=HF_API_TOKEN
)
logger.info("Finished downloading DB.")
except Exception as e:
logger.warning(f"Could not download from Hugging Face Hub (this is normal on first run): {e}")
else:
logger.info("Local Chroma DB exists, loading existing data.")
def upload_to_hf_hub():
if os.path.exists(LOCAL_DB_DIR):
try:
logger.info(f"Uploading updated Chroma DB '{LOCAL_DB_DIR}' to {REPO_ID}...")
hf_api.upload_folder(
folder_path=LOCAL_DB_DIR,
path_in_repo=LOCAL_DB_DIR,
repo_id=REPO_ID,
repo_type="dataset",
token=HF_API_TOKEN,
commit_message="Update RSS news database"
)
logger.info(f"Database folder '{LOCAL_DB_DIR}' uploaded to: {REPO_ID}")
except Exception as e:
logger.error(f"Error uploading to Hugging Face Hub: {e}")
|