USO / uso /flux /pipeline.py
fenfan's picture
init commit
0f74281
# Copyright (c) 2025 Bytedance Ltd. and/or its affiliates. All rights reserved.
# Copyright (c) 2024 Black Forest Labs and The XLabs-AI Team. All rights reserved.
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import math
from typing import Literal, Optional
from torch import Tensor
import torch
from einops import rearrange
from PIL import ExifTags, Image
import torchvision.transforms.functional as TVF
from uso.flux.modules.layers import (
DoubleStreamBlockLoraProcessor,
DoubleStreamBlockProcessor,
SingleStreamBlockLoraProcessor,
SingleStreamBlockProcessor,
)
from uso.flux.sampling import denoise, get_noise, get_schedule, prepare_multi_ip, unpack
from uso.flux.util import (
get_lora_rank,
load_ae,
load_checkpoint,
load_clip,
load_flow_model,
load_flow_model_only_lora,
load_t5,
)
def find_nearest_scale(image_h, image_w, predefined_scales):
"""
根据图片的高度和宽度,找到最近的预定义尺度。
:param image_h: 图片的高度
:param image_w: 图片的宽度
:param predefined_scales: 预定义尺度列表 [(h1, w1), (h2, w2), ...]
:return: 最近的预定义尺度 (h, w)
"""
# 计算输入图片的长宽比
image_ratio = image_h / image_w
# 初始化变量以存储最小差异和最近的尺度
min_diff = float("inf")
nearest_scale = None
# 遍历所有预定义尺度,找到与输入图片长宽比最接近的尺度
for scale_h, scale_w in predefined_scales:
predefined_ratio = scale_h / scale_w
diff = abs(predefined_ratio - image_ratio)
if diff < min_diff:
min_diff = diff
nearest_scale = (scale_h, scale_w)
return nearest_scale
def preprocess_ref(raw_image: Image.Image, long_size: int = 512, scale_ratio: int = 1):
# 获取原始图像的宽度和高度
image_w, image_h = raw_image.size
if image_w == image_h and image_w == 16:
return raw_image
# 计算长边和短边
if image_w >= image_h:
new_w = long_size
new_h = int((long_size / image_w) * image_h)
else:
new_h = long_size
new_w = int((long_size / image_h) * image_w)
# 按新的宽高进行等比例缩放
raw_image = raw_image.resize((new_w, new_h), resample=Image.LANCZOS)
# 为了能让canny img进行scale
scale_ratio = int(scale_ratio)
target_w = new_w // (16 * scale_ratio) * (16 * scale_ratio)
target_h = new_h // (16 * scale_ratio) * (16 * scale_ratio)
# 计算裁剪的起始坐标以实现中心裁剪
left = (new_w - target_w) // 2
top = (new_h - target_h) // 2
right = left + target_w
bottom = top + target_h
# 进行中心裁剪
raw_image = raw_image.crop((left, top, right, bottom))
# 转换为 RGB 模式
raw_image = raw_image.convert("RGB")
return raw_image
def resize_and_centercrop_image(image, target_height_ref1, target_width_ref1):
target_height_ref1 = int(target_height_ref1 // 64 * 64)
target_width_ref1 = int(target_width_ref1 // 64 * 64)
h, w = image.shape[-2:]
if h < target_height_ref1 or w < target_width_ref1:
# 计算长宽比
aspect_ratio = w / h
if h < target_height_ref1:
new_h = target_height_ref1
new_w = new_h * aspect_ratio
if new_w < target_width_ref1:
new_w = target_width_ref1
new_h = new_w / aspect_ratio
else:
new_w = target_width_ref1
new_h = new_w / aspect_ratio
if new_h < target_height_ref1:
new_h = target_height_ref1
new_w = new_h * aspect_ratio
else:
aspect_ratio = w / h
tgt_aspect_ratio = target_width_ref1 / target_height_ref1
if aspect_ratio > tgt_aspect_ratio:
new_h = target_height_ref1
new_w = new_h * aspect_ratio
else:
new_w = target_width_ref1
new_h = new_w / aspect_ratio
# 使用 TVF.resize 进行图像缩放
image = TVF.resize(image, (math.ceil(new_h), math.ceil(new_w)))
# 计算中心裁剪的参数
top = (image.shape[-2] - target_height_ref1) // 2
left = (image.shape[-1] - target_width_ref1) // 2
# 使用 TVF.crop 进行中心裁剪
image = TVF.crop(image, top, left, target_height_ref1, target_width_ref1)
return image
class USOPipeline:
def __init__(
self,
model_type: str,
device: torch.device,
offload: bool = False,
only_lora: bool = False,
lora_rank: int = 16,
hf_download: bool = True,
):
self.device = device
self.offload = offload
self.model_type = model_type
self.clip = load_clip(self.device)
self.t5 = load_t5(self.device, max_length=512)
self.ae = load_ae(model_type, device="cpu" if offload else self.device)
self.use_fp8 = "fp8" in model_type
if only_lora:
self.model = load_flow_model_only_lora(
model_type,
device="cpu" if offload else self.device,
lora_rank=lora_rank,
use_fp8=self.use_fp8,
hf_download=hf_download,
)
else:
self.model = load_flow_model(
model_type, device="cpu" if offload else self.device
)
def load_ckpt(self, ckpt_path):
if ckpt_path is not None:
from safetensors.torch import load_file as load_sft
print("Loading checkpoint to replace old keys")
# load_sft doesn't support torch.device
if ckpt_path.endswith("safetensors"):
sd = load_sft(ckpt_path, device="cpu")
missing, unexpected = self.model.load_state_dict(
sd, strict=False, assign=True
)
else:
dit_state = torch.load(ckpt_path, map_location="cpu")
sd = {}
for k in dit_state.keys():
sd[k.replace("module.", "")] = dit_state[k]
missing, unexpected = self.model.load_state_dict(
sd, strict=False, assign=True
)
self.model.to(str(self.device))
print(f"missing keys: {missing}\n\n\n\n\nunexpected keys: {unexpected}")
def set_lora(
self,
local_path: str = None,
repo_id: str = None,
name: str = None,
lora_weight: int = 0.7,
):
checkpoint = load_checkpoint(local_path, repo_id, name)
self.update_model_with_lora(checkpoint, lora_weight)
def set_lora_from_collection(
self, lora_type: str = "realism", lora_weight: int = 0.7
):
checkpoint = load_checkpoint(
None, self.hf_lora_collection, self.lora_types_to_names[lora_type]
)
self.update_model_with_lora(checkpoint, lora_weight)
def update_model_with_lora(self, checkpoint, lora_weight):
rank = get_lora_rank(checkpoint)
lora_attn_procs = {}
for name, _ in self.model.attn_processors.items():
lora_state_dict = {}
for k in checkpoint.keys():
if name in k:
lora_state_dict[k[len(name) + 1 :]] = checkpoint[k] * lora_weight
if len(lora_state_dict):
if name.startswith("single_blocks"):
lora_attn_procs[name] = SingleStreamBlockLoraProcessor(
dim=3072, rank=rank
)
else:
lora_attn_procs[name] = DoubleStreamBlockLoraProcessor(
dim=3072, rank=rank
)
lora_attn_procs[name].load_state_dict(lora_state_dict)
lora_attn_procs[name].to(self.device)
else:
if name.startswith("single_blocks"):
lora_attn_procs[name] = SingleStreamBlockProcessor()
else:
lora_attn_procs[name] = DoubleStreamBlockProcessor()
self.model.set_attn_processor(lora_attn_procs)
def __call__(
self,
prompt: str,
width: int = 512,
height: int = 512,
guidance: float = 4,
num_steps: int = 50,
seed: int = 123456789,
**kwargs,
):
width = 16 * (width // 16)
height = 16 * (height // 16)
device_type = self.device if isinstance(self.device, str) else self.device.type
with torch.autocast(
enabled=self.use_fp8, device_type=device_type, dtype=torch.bfloat16
):
return self.forward(
prompt, width, height, guidance, num_steps, seed, **kwargs
)
@torch.inference_mode()
def gradio_generate(
self,
prompt: str,
image_prompt1: Image.Image,
image_prompt2: Image.Image,
image_prompt3: Image.Image,
seed: int,
width: int = 1024,
height: int = 1024,
guidance: float = 4,
num_steps: int = 25,
keep_size: bool = False,
content_long_size: int = 512,
):
ref_content_imgs = [image_prompt1]
ref_content_imgs = [img for img in ref_content_imgs if isinstance(img, Image.Image)]
ref_content_imgs = [preprocess_ref(img, content_long_size) for img in ref_content_imgs]
ref_style_imgs = [image_prompt2, image_prompt3]
ref_style_imgs = [img for img in ref_style_imgs if isinstance(img, Image.Image)]
ref_style_imgs = [self.model.vision_encoder_processor(img, return_tensors="pt").to(self.device) for img in ref_style_imgs]
seed = seed if seed != -1 else torch.randint(0, 10**8, (1,)).item()
# whether keep input image size
if keep_size and len(ref_content_imgs)>0:
width, height = ref_content_imgs[0].size
width, height = int(width * (1024 / content_long_size)), int(height * (1024 / content_long_size))
img = self(
prompt=prompt,
width=width,
height=height,
guidance=guidance,
num_steps=num_steps,
seed=seed,
ref_imgs=ref_content_imgs,
siglip_inputs=ref_style_imgs,
)
filename = f"output/gradio/{seed}_{prompt[:20]}.png"
os.makedirs(os.path.dirname(filename), exist_ok=True)
exif_data = Image.Exif()
exif_data[ExifTags.Base.Make] = "USO"
exif_data[ExifTags.Base.Model] = self.model_type
info = f"{prompt=}, {seed=}, {width=}, {height=}, {guidance=}, {num_steps=}"
exif_data[ExifTags.Base.ImageDescription] = info
img.save(filename, format="png", exif=exif_data)
return img, filename
@torch.inference_mode
def forward(
self,
prompt: str,
width: int,
height: int,
guidance: float,
num_steps: int,
seed: int,
ref_imgs: list[Image.Image] | None = None,
pe: Literal["d", "h", "w", "o"] = "d",
siglip_inputs: list[Tensor] | None = None,
):
x = get_noise(
1, height, width, device=self.device, dtype=torch.bfloat16, seed=seed
)
timesteps = get_schedule(
num_steps,
(width // 8) * (height // 8) // (16 * 16),
shift=True,
)
if self.offload:
self.ae.encoder = self.ae.encoder.to(self.device)
x_1_refs = [
self.ae.encode(
(TVF.to_tensor(ref_img) * 2.0 - 1.0)
.unsqueeze(0)
.to(self.device, torch.float32)
).to(torch.bfloat16)
for ref_img in ref_imgs
]
if self.offload:
self.offload_model_to_cpu(self.ae.encoder)
self.t5, self.clip = self.t5.to(self.device), self.clip.to(self.device)
inp_cond = prepare_multi_ip(
t5=self.t5,
clip=self.clip,
img=x,
prompt=prompt,
ref_imgs=x_1_refs,
pe=pe,
)
if self.offload:
self.offload_model_to_cpu(self.t5, self.clip)
self.model = self.model.to(self.device)
x = denoise(
self.model,
**inp_cond,
timesteps=timesteps,
guidance=guidance,
siglip_inputs=siglip_inputs,
)
if self.offload:
self.offload_model_to_cpu(self.model)
self.ae.decoder.to(x.device)
x = unpack(x.float(), height, width)
x = self.ae.decode(x)
self.offload_model_to_cpu(self.ae.decoder)
x1 = x.clamp(-1, 1)
x1 = rearrange(x1[-1], "c h w -> h w c")
output_img = Image.fromarray((127.5 * (x1 + 1.0)).cpu().byte().numpy())
return output_img
def offload_model_to_cpu(self, *models):
if not self.offload:
return
for model in models:
model.cpu()
torch.cuda.empty_cache()