Spaces:
Build error
Build error
File size: 12,917 Bytes
ef7a878 32f88c0 b22a6ec 351252d b22a6ec 1de6e28 dbca570 2f03bd6 d4b107b cf8326e 85002a1 ad6d7c2 85002a1 dbca570 2f03bd6 ad6d7c2 dbca570 ad6d7c2 cf8326e 8c6ad91 ad6d7c2 cf8326e dbca570 cf8326e 1137662 8c6ad91 ad6d7c2 dbca570 1de6e28 85002a1 6a801d6 85002a1 ad6d7c2 b6f831c 1de6e28 6898666 3fa2ed9 d353554 1de6e28 071df52 3a22e5c 071df52 85002a1 3fa2ed9 85002a1 1de6e28 1376856 b98f4ad 7ef26c1 1376856 85002a1 b992645 32f88c0 ad6d7c2 32f88c0 361f8d0 85002a1 361f8d0 85002a1 071df52 361f8d0 071df52 85002a1 1de6e28 9e722fb 8c6ad91 9e722fb 7ef26c1 071df52 b992645 1de6e28 9e722fb b992645 7ef26c1 b992645 8c6ad91 badcd8d 7ef26c1 1de6e28 55eafca 9e722fb 8c6ad91 9e722fb 8c6ad91 ef7a878 9e722fb b6f831c 9e722fb b992645 9e722fb 1de6e28 8c6ad91 b992645 9e722fb d262ec1 9e722fb 8c6ad91 d4b107b 7ef26c1 f7e87b9 b6f831c b992645 9e722fb b6f831c 8c6ad91 b992645 9e722fb f7e87b9 7ef26c1 8c6ad91 d4b107b f7e87b9 9e722fb 8c6ad91 f7e87b9 7ef26c1 9e722fb 3a22e5c b992645 9e722fb 1de6e28 f7e87b9 b992645 9e722fb 2d9e081 8c6ad91 9e722fb b992645 7ef26c1 0ac786e 440d6b7 8c6ad91 440d6b7 d2774a4 0ac786e 8c6ad91 d2774a4 8c6ad91 d2774a4 b98f4ad d2774a4 9e722fb 440d6b7 8ec53db 6a67784 378420c ad6d7c2 85002a1 d2774a4 7735671 8ec53db b6f831c 8ec53db 8c6ad91 b6f831c 9e722fb 8c6ad91 b6f831c 3fa2ed9 b6f831c 9e722fb 7735671 8c6ad91 7735671 8c6ad91 7735671 8c6ad91 b6f831c 1de6e28 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 |
# app.py
# Version: 1.07 (08.24.24), ALPHA
#---------------------------------------------------------------------------------------------------------------------------------------------
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#---------------------------------------------------------------------------------------------------------------------------------------------
import spaces
import gradio as gr
from PIL import Image
from pydub import AudioSegment
import os
import re
import time
import warnings
#import datetime
import subprocess
from pathlib import Path
from fpdf import FPDF
import psutil
from gpuinfo import GPUInfo
#import pandas as pd
#import csv
import numpy as np
import torch
#import torchaudio
#import torchaudio.transforms as transforms
from transformers import pipeline, AutoTokenizer, AutoModelForSeq2SeqLM
import spacy
import networkx as nx
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics.pairwise import cosine_similarity
warnings.filterwarnings("ignore")
# ------------header section------------
HEADER_INFO = """
# WEB APP ✨| Norwegian WHISPER Model
Switch Work [Transkribering av lydfiler til norsk skrift]
""".strip()
LOGO = "https://cdn-lfs-us-1.huggingface.co/repos/fe/3b/fe3bd7c8beece8b087fddcc2278295e7f56c794c8dcf728189f4af8bddc585e1/5112f67899d65e9797a7a60d05f983cf2ceefbe2f7cba74eeca93a4e7061becc?response-content-disposition=inline%3B+filename*%3DUTF-8%27%27logo.png%3B+filename%3D%22logo.png%22%3B&response-content-type=image%2Fpng&Expires=1724881270&Policy=eyJTdGF0ZW1lbnQiOlt7IkNvbmRpdGlvbiI6eyJEYXRlTGVzc1RoYW4iOnsiQVdTOkVwb2NoVGltZSI6MTcyNDg4MTI3MH19LCJSZXNvdXJjZSI6Imh0dHBzOi8vY2RuLWxmcy11cy0xLmh1Z2dpbmdmYWNlLmNvL3JlcG9zL2ZlLzNiL2ZlM2JkN2M4YmVlY2U4YjA4N2ZkZGNjMjI3ODI5NWU3ZjU2Yzc5NGM4ZGNmNzI4MTg5ZjRhZjhiZGRjNTg1ZTEvNTExMmY2Nzg5OWQ2NWU5Nzk3YTdhNjBkMDVmOTgzY2YyY2VlZmJlMmY3Y2JhNzRlZWNhOTNhNGU3MDYxYmVjYz9yZXNwb25zZS1jb250ZW50LWRpc3Bvc2l0aW9uPSomcmVzcG9uc2UtY29udGVudC10eXBlPSoifV19&Signature=ipo8wTjtC7R0QHbo%7Et9Q5CTaI3cZKxM0beajqlApfm5fh7%7EW-FULu1-ISL5bkowBSw9m5RdGoyOqj336OSS5fPD%7EnzYNmAMd3T5bx2-KfCDh6jz0HVECt8S7HeIu%7El2TetxrzL2tdHw4Np4Zpa8JKOnNnje24fF0Nr-xUS2dvPJf54rIL70-iWVXXhw8owxt0%7E1CJsUHC9oibp9B4mZcyWvvRldhDopiQBYELusZdTW3qvtTBK083WP3gHQxadQp8UDVTPZ0g3i112G2NfFJB%7Epa70XeN8m3E6ORx6pVH%7EW6IzjvmapWSF-tmXH-26wYG8aof%7E1U7enbR1w2QBTS-g__&Key-Pair-Id=K24J24Z295AEI9"
SIDEBAR_INFO = f"""
<div align="center">
<img src="{LOGO}" style="width: 100%; height: auto;"/>
</div>
"""
# ------------transcribe section------------
#device = "cuda" if torch.cuda.is_available() else "cpu"
@spaces.GPU()
def convert_to_wav(filepath):
_, file_ending = os.path.splitext(f'{filepath}')
audio_file = filepath.replace(file_ending, ".wav")
os.system(f'ffmpeg -i "{filepath}" -ar 16000 -ac 1 -c:a pcm_s16le "{audio_file}"')
return audio_file
pipe = pipeline("automatic-speech-recognition", model="NbAiLab/nb-whisper-large", chunk_length_s=30)
@spaces.GPU()
def transcribe_audio(audio_file, batch_size=16):
start_time = time.time()
outputs = pipe(audio_file, batch_size=batch_size, return_timestamps=False, generate_kwargs={'task': 'transcribe', 'language': 'no'}) # skip_special_tokens=True
text = outputs["text"]
end_time = time.time()
output_time = end_time - start_time
word_count = len(text.split())
# GPU usage
memory = psutil.virtual_memory()
gpu_utilization, gpu_memory = GPUInfo.gpu_usage()
gpu_utilization = gpu_utilization[0] if len(gpu_utilization) > 0 else 0
gpu_memory = gpu_memory[0] if len(gpu_memory) > 0 else 0
# CPU usage
cpu_usage = psutil.cpu_percent(interval=1)
# System info string
system_info = f"""
*Memory: {memory.total / (1024 * 1024 * 1024):.2f}GB, used: {memory.percent}%, available: {memory.available / (1024 * 1024 * 1024):.2f}GB.*
*Processing time: {output_time:.2f} seconds.*
*Number of words: {word_count}*
*GPU Utilization: {gpu_utilization}%, GPU Memory: {gpu_memory}*
*CPU Usage: {cpu_usage}%*
"""
return text.strip(), system_info
# ------------summary section------------
@spaces.GPU()
def clean_text(text):
text = re.sub(r'https?:\/\/.*[\r\n]*', '', text)
text = re.sub(r'[^\w\s]', '', text)
text = re.sub(r'\s+', ' ', text).strip()
return text
nlp = spacy.blank("nb") # 'nb' ==> codename = Norwegian Bokmål
nlp.add_pipe('sentencizer')
spacy_stop_words = spacy.lang.nb.stop_words.STOP_WORDS
@spaces.GPU()
def preprocess_text(text):
# Process the text with SpaCy
doc = nlp(text)
# SpaCy's stop top wrds direct
stop_words = spacy_stop_words
# Filter out stop words
words = [token.text for token in doc if token.text.lower() not in stop_words]
return ' '.join(words)
# Summarize w/T5 model
@spaces.GPU()
def summarize_text(text):
preprocessed_text = preprocess_text(text)
inputs = summarization_tokenizer(preprocessed_text, max_length=1024, return_tensors="pt", truncation=True)
inputs = inputs.to(device)
summary_ids = summarization_model.generate(inputs.input_ids, num_beams=5, max_length=150, early_stopping=True)
return summarization_tokenizer.decode(summary_ids[0], skip_special_tokens=True)
def build_similarity_matrix(sentences, stop_words):
similarity_matrix = nx.Graph()
for i, tokens_a in enumerate(sentences):
for j, tokens_b in enumerate(sentences):
if i != j:
common_words = set(tokens_a) & set(tokens_b)
similarity_matrix.add_edge(i, j, weight=len(common_words))
return similarity_matrix
# PageRank
def graph_based_summary(text, num_paragraphs=3):
doc = nlp(text)
sentences = [sent.text for sent in doc.sents]
if len(sentences) < num_paragraphs:
return ' '.join(sentences)
sentence_tokens = [nlp(sent) for sent in sentences]
stop_words = spacy_stop_words
filtered_tokens = [[token.text for token in tokens if token.text.lower() not in stop_words] for tokens in sentence_tokens]
similarity_matrix = build_similarity_matrix(filtered_tokens, stop_words)
scores = nx.pagerank(similarity_matrix)
ranked_sentences = sorted(((scores[i], sent) for i, sent in enumerate(sentences)), reverse=True)
return ' '.join([sent for _, sent in ranked_sentences[:num_paragraphs]])
# LexRank
def lex_rank_summary(text, num_paragraphs=3, threshold=0.1):
doc = nlp(text)
sentences = [sent.text for sent in doc.sents]
if len(sentences) < num_paragraphs:
return ' '.join(sentences) # Adjusted to return a single string
stop_words = spacy_stop_words
vectorizer = TfidfVectorizer(stop_words=list(stop_words))
X = vectorizer.fit_transform(sentences)
similarity_matrix = cosine_similarity(X, X)
# Apply threshold@similarity matrix
similarity_matrix[similarity_matrix < threshold] = 0
nx_graph = nx.from_numpy_array(similarity_matrix)
scores = nx.pagerank(nx_graph)
ranked_sentences = sorted(((scores[i], s) for i, s in enumerate(sentences)), reverse=True)
return ' '.join([ranked_sentences[i][1] for i in range(num_paragraphs)])
# TextRank
def text_rank_summary(text, num_paragraphs=3):
doc = nlp(text)
sentences = [sent.text for sent in doc.sents]
if len(sentences) < num_paragraphs:
return ' '.join(sentences)
stop_words = spacy_stop_words
vectorizer = TfidfVectorizer(stop_words=list(stop_words))
X = vectorizer.fit_transform(sentences)
similarity_matrix = cosine_similarity(X, X)
nx_graph = nx.from_numpy_array(similarity_matrix)
scores = nx.pagerank(nx_graph)
ranked_sentences = sorted(((scores[i], s) for i, s in enumerate(sentences)), reverse=True)
return ' '.join([ranked_sentences[i][1] for i in range(num_paragraphs)])
# Save text+summary/PDF
def save_to_pdf(text, summary):
pdf = FPDF()
pdf.add_page()
pdf.set_font("Arial", size=12)
if text:
pdf.multi_cell(0, 10, "Text:\n" + text)
pdf.ln(10) # Paragraph space
if summary:
pdf.multi_cell(0, 10, "Summary:\n" + summary)
pdf_output_path = "transcription.pdf"
pdf.output(pdf_output_path)
return pdf_output_path
iface = gr.Blocks()
with iface:
gr.HTML(SIDEBAR_INFO)
gr.Markdown(HEADER_INFO)
with gr.Tabs():
with gr.TabItem("Summary | PageRank"):
text_input_graph = gr.Textbox(label="Input Text", placeholder="txt2summarize")
summary_output_graph = gr.Textbox(label="PageRank | token-based similarity")
gr.Markdown("""
**token-based**: similarity matrix edge weights representing token overlap/
ranked by their centrality in the graph (good with dense inter-sentence relationships)
""")
gr.Markdown("""
*Bjørn*: **gir sammendrag som fanger opp de mest relevante setninger i teksten**
""")
summarize_transcribed_button_graph = gr.Button("Summary of Transcribed Text, Click Here")
summarize_transcribed_button_graph.click(fn=lambda text: graph_based_summary(text), inputs=[text_output], outputs=[summary_output_graph])
summarize_uploaded_button_graph = gr.Button("Upload Text to Summarize, Click Here")
summarize_uploaded_button_graph.click(fn=graph_based_summary, inputs=[text_input_graph], outputs=[summary_output_graph])
with gr.TabItem("Summary | LexRank"):
text_input_lex = gr.Textbox(label="Input Text", placeholder="txt2summarize")
summary_output_lex = gr.Textbox(label="LexRank | cosine similarity")
gr.Markdown("""
**semantic**: TF-IDF vectorization@cosine similarity matrix, ranked by eigenvector centrality.
(good for sparse graph structures with thresholding)
""")
gr.Markdown("""
*Bjørn*: **gir sammendrag som best fanger opp betydningen av hele teksten**
""")
summarize_transcribed_button_lex = gr.Button("Summary of Transcribed Text, Click Here")
summarize_transcribed_button_lex.click(fn=lambda text: lex_rank_summary(text), inputs=[text_output], outputs=[summary_output_lex])
summarize_uploaded_button_lex = gr.Button("Upload Text to Summarize, Click Here")
summarize_uploaded_button_lex.click(fn=lex_rank_summary, inputs=[text_input_lex], outputs=[summary_output_lex])
with gr.TabItem("Summary | TextRank"):
text_input_text_rank = gr.Textbox(label="Input Text", placeholder="txt2summarize")
summary_output_text_rank = gr.Textbox(label="TextRank | lexical similarity")
gr.Markdown("""
**sentence**: graph with weighted edges based on lexical similarity. (i.e" "sentence similarity"word overlap)/sentence similarity
""")
gr.Markdown("""
*Bjørn*: **sammendrag basert på i de setningene som ligner mest på hverandre fra teksten**
""")
@ summarize_transcribed_button_text_rank = gr.Button("Summary of Transcribed Text, Click Here")
summarize_transcribed_button_text_rank.click(fn=lambda text: text_rank_summary(text), inputs=[text_output], outputs=[summary_output_text_rank])
summarize_uploaded_button_text_rank = gr.Button("Upload Text to Summarize, Click Here")
summarize_uploaded_button_text_rank.click(fn=text_rank_summary, inputs=[text_input_text_rank], outputs=[summary_output_text_rank])
with gr.TabItem("Download PDF"):
pdf_text_only = gr.Button("Download PDF with Text Only")
pdf_summary_only = gr.Button("Download PDF with Summary Only")
pdf_both = gr.Button("Download PDF with Both")
pdf_output = gr.File(label="Download PDF")
pdf_text_only.click(fn=lambda text: save_to_pdf(text, ""), inputs=[text_output], outputs=[pdf_output])
pdf_summary_only.click(fn=lambda summary: save_to_pdf("", summary), inputs=[summary_output_graph, summary_output_lex, summary_output_text_rank], outputs=[pdf_output]) # Includes all summary outputs
pdf_both.click(fn=lambda text, summary: save_to_pdf(text, summary), inputs=[text_output, summary_output_graph], outputs=[pdf_output]) # Defaulting to Graph-based summary
iface.launch(share=True, debug=True)
|