Spaces:
Build error
Build error
File size: 10,382 Bytes
0ca8cef 3d3ff49 d4b107b 9e722fb 8c6ad91 b992645 0201e30 1137662 b992645 8c6ad91 d353554 8c6ad91 d353554 b992645 3d3ff49 8c6ad91 440d6b7 47661bd 8c6ad91 8b1327d 329c8dd 0ca8cef b992645 0ca8cef b992645 0ca8cef b992645 0ca8cef ca866cd 9769005 440d6b7 b3d3679 b98f4ad d2774a4 0ca8cef f4108af 0ca8cef f4108af 0ca8cef 3698f30 b3d3679 0ca8cef 3698f30 0ca8cef b3d3679 3698f30 b992645 1137662 b992645 3698f30 0ac786e f4108af b992645 0ca8cef 8c6ad91 9e722fb 8c6ad91 9e722fb b992645 9e722fb b992645 8c6ad91 badcd8d 8c6ad91 55eafca 9e722fb 8c6ad91 9e722fb 8c6ad91 d2774a4 8c6ad91 9e722fb 8c6ad91 9e722fb b992645 9e722fb 8c6ad91 b992645 9e722fb d262ec1 9e722fb 8c6ad91 d4b107b 8c6ad91 f7e87b9 b992645 9e722fb 8c6ad91 b992645 9e722fb f7e87b9 8c6ad91 d4b107b f7e87b9 9e722fb 8c6ad91 f7e87b9 8c6ad91 9e722fb b992645 9e722fb f7e87b9 b992645 9e722fb 2d9e081 8c6ad91 9e722fb b992645 8c6ad91 0ac786e 440d6b7 8c6ad91 440d6b7 d2774a4 0ac786e 8c6ad91 d2774a4 8c6ad91 d2774a4 b98f4ad d2774a4 9e722fb 440d6b7 8b1327d 8c6ad91 8b1327d b992645 8b1327d 8ec53db 8b1327d 2920f00 d2774a4 7735671 8c6ad91 7735671 8c6ad91 8ec53db 8c6ad91 9e722fb 7735671 8c6ad91 8ec53db 8c6ad91 9e722fb 8c6ad91 9e722fb 8c6ad91 9e722fb 8c6ad91 9e722fb 7735671 8c6ad91 7735671 8c6ad91 7735671 8c6ad91 8ec53db 9e722fb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 |
"""
This application processes audio files, transcribes them using a pretrained model (Whisper), and provides multiple summarization options for the transcribed text. The application also includes a PDF generation feature and is built with Gradio for the user interface
Webapp, transkribering (norsk), NbAiLab/nb-whisper-large, oppsummering, pdf-download.
"""
import time
import os
import warnings
from pydub import AudioSegment
import torch
from transformers import pipeline
from huggingface_hub import model_info
import spacy
#import nltk
#from nltk.tokenize import word_tokenize
#from nltk.corpus import stopwords
# from nltk.sem.logic import *
from nltk.tokenize import PunktTokenizer
import networkx as nx
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics.pairwise import cosine_similarity
import pandas as pd
import numpy as np
import re
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
import gradio as gr
from fpdf import FPDF
from PIL import Image
# Suppress warnings
warnings.filterwarnings("ignore")
#nltk.download('punkt', quiet=True)
#nltk.download('stopwords', quiet=True)
#word_tokenize = PunktTokenizer()
# Convert m4a audio to wav format
def convert_to_wav(audio_file):
audio = AudioSegment.from_file(audio_file, format="m4a")
wav_file = "temp.wav"
audio.export(wav_file, format="wav")
return wav_file
# Initialize device for torch
device = "cuda" if torch.cuda.is_available() else "cpu"
# Load smoking-big-pipe
MODEL_NAME = "NbAiLab/nb-whisper-medium"
lang = "no"
task = "transcribe"
forced_decoder_ids = None
# get_decoder_prompt_ids =
device = 0 if torch.cuda.is_available() else "cpu"
pipe = pipeline(
task="automatic-speech-recognition",
model=MODEL_NAME,
chunk_length_s=30,
device=device,
)
#pipe.model.config.forced_decoder_ids = pipe.tokenizer.get_decoder_prompt_ids(language=lang, task="transcribe")
def transcribe_audio(audio_file):
if audio_file.endswith(".m4a"):
audio_file = convert_to_wav(audio_file)
start_time = time.time()
text = pipe(audio_file)["text"]
# Load the audio file using torchaudio
#waveform, sample_rate = torchaudio.load(audio_file)
# Process the waveform with Whisper's processor
#input_features = whisper_processor(waveform, sampling_rate=sample_rate, return_tensors="pt").input_features.to(device)
# Generate the transcription
#output = whisper_model.generate(input_features=input_features)
# Decode the output
#text = whisper_processor.batch_decode(output, skip_special_tokens=True)[0]
output_time = time.time() - start_time
# # Calculate audio duration using the pipeline's internal method
audio_duration = pipe.feature_extractor.sampling_rate * len(pipe.feature_extractor(audio_file)["input_features"][0]) / pipe.feature_extractor.sampling_rate
# Real-time Factor calculation
rtf = output_time / audio_duration
# Format of the result
result = (
f"Time taken: {output_time:.2f} seconds\n"
f"Audio duration: {audio_duration / 60:.2f} minutes ({audio_duration:.2f} seconds)\n"
f"Real-time Factor (RTF): {rtf:.2f}\n"
f"Number of words: {len(text.split())}\n\n"
"Real-time Factor (RTF) is a measure often used to evaluate the speed of speech recognition systems. "
"It is the ratio of transcription time to the duration of the audio.\n\n"
"An RTF of less than 1 means the transcription process is faster than real-time."
)
# result = f"Time taken: {output_time:.2f} seconds\nNumber of words: {len(text.split())}"
return text, result
# 'punkt' is used for tokenizing sentences and stopwords for filtering, currently only for English(?)
# Clean and preprocess text for summarization
def clean_text(text):
text = re.sub(r'https?:\/\/.*[\r\n]*', '', text)
text = re.sub(r'[^\w\s]', '', text)
text = re.sub(r'\s+', ' ', text).strip()
return text
nlp = spacy.blank("nb") # 'nb' is code for Norwegian Bokmål
spacy_stop_words = spacy.lang.nb.stop_words.STOP_WORDS
def preprocess_text(text):
# Process the text with SpaCy
doc = nlp(text)
# Use SpaCy's stop words directly
stop_words = spacy_stop_words
# Filter out stop words
words = [token.text for token in doc if token.text.lower() not in stop_words]
return ' '.join(words)
# Summarize text using the T5 model
def summarize_text(text):
preprocessed_text = preprocess_text(text)
inputs = summarization_tokenizer(preprocessed_text, max_length=1024, return_tensors="pt", truncation=True)
inputs = inputs.to(device)
summary_ids = summarization_model.generate(inputs.input_ids, num_beams=5, max_length=150, early_stopping=True)
return summarization_tokenizer.decode(summary_ids[0], skip_special_tokens=True)
# Build similarity matrix for graph-based summary
def build_similarity_matrix(sentences, stop_words):
similarity_matrix = nx.Graph()
for i, tokens_a in enumerate(sentences):
for j, tokens_b in enumerate(sentences):
if i != j:
common_words = set(tokens_a) & set(tokens_b)
similarity_matrix.add_edge(i, j, weight=len(common_words))
return similarity_matrix
# Graph-based summarization
def graph_based_summary(text, num_paragraphs=3):
doc = nlp(text)
sentences = [sent.text for sent in doc.sents]
if len(sentences) < num_paragraphs:
return sentences
sentence_tokens = [nlp(sent) for sent in sentences]
stop_words = spacy_stop_words
filtered_tokens = [[token.text for token in tokens if token.text.lower() not in stop_words] for tokens in sentence_tokens]
similarity_matrix = build_similarity_matrix(filtered_tokens, stop_words)
scores = nx.pagerank(similarity_matrix)
ranked_sentences = sorted(((scores[i], sent) for i, sent in enumerate(sentences)), reverse=True)
return ' '.join([sent for _, sent in ranked_sentences[:num_paragraphs]])
# LexRank summarization
def lex_rank_summary(text, num_paragraphs=3, threshold=0.1):
doc = nlp(text)
sentences = [sent.text for sent in doc.sents]
if len(sentences) < num_paragraphs:
return sentences
stop_words = spacy_stop_words
vectorizer = TfidfVectorizer(stop_words=list(stop_words))
X = vectorizer.fit_transform(sentences)
similarity_matrix = cosine_similarity(X, X)
# Apply threshold to the similarity matrix
similarity_matrix[similarity_matrix < threshold] = 0
nx_graph = nx.from_numpy_array(similarity_matrix)
scores = nx.pagerank(nx_graph)
ranked_sentences = sorted(((scores[i], s) for i, s in enumerate(sentences)), reverse=True)
return ' '.join([ranked_sentences[i][1] for i in range(num_paragraphs)])
# TextRank summarization
def text_rank_summary(text, num_paragraphs=3):
doc = nlp(text)
sentences = [sent.text for sent in doc.sents]
if len(sentences) < num_paragraphs:
return sentences
stop_words = spacy_stop_words
vectorizer = TfidfVectorizer(stop_words=list(stop_words))
X = vectorizer.fit_transform(sentences)
similarity_matrix = cosine_similarity(X, X)
nx_graph = nx.from_numpy_array(similarity_matrix)
scores = nx.pagerank(nx_graph)
ranked_sentences = sorted(((scores[i], s) for i, s in enumerate(sentences)), reverse=True)
return ' '.join([ranked_sentences[i][1] for i in range(num_paragraphs)])
# Save text and summary to PDF
def save_to_pdf(text, summary):
pdf = FPDF()
pdf.add_page()
pdf.set_font("Arial", size=12)
if text:
pdf.multi_cell(0, 10, "Text:\n" + text)
pdf.ln(10) # Paragraph space
if summary:
pdf.multi_cell(0, 10, "Summary:\n" + summary)
pdf_output_path = "transcription.pdf"
pdf.output(pdf_output_path)
return pdf_output_path
def _return_img_html_embed(img_url):
HTML_str = (
f'<center> <img src="{img_url}" alt="Image" width="100%" height="auto"> </center>'
)
return HTML_str
# Gradio Interface
def display_image():
img_url = "https://huggingface.co/spaces/camparchimedes/transcription_app/blob/main/picture.png"
html_embed_str = _return_img_html_embed(img_url)
return html_embed_str
iface = gr.Blocks()
with iface:
gr.HTML(display_image())
gr.Markdown("# Vi har nå muligheten til å oversette lydfiler til norsk skrift.")
with gr.Tabs():
with gr.TabItem("Transcription"):
audio_input = gr.Audio(type="filepath")
text_output = gr.Textbox(label="Text")
result_output = gr.Textbox(label="Time taken and Number of words")
transcribe_button = gr.Button("Transcribe")
transcribe_button.click(fn=transcribe_audio, inputs=[audio_input], outputs=[text_output, result_output])
with gr.TabItem("Summary | Graph-based"):
summary_output = gr.Textbox(label="Summary | Graph-based")
summarize_button = gr.Button("Summarize")
summarize_button.click(fn=lambda text: graph_based_summary(text), inputs=[text_output], outputs=[summary_output])
with gr.TabItem("Summary | LexRank"):
summary_output = gr.Textbox(label="Summary | LexRank")
summarize_button = gr.Button("Summarize")
summarize_button.click(fn=lambda text: lex_rank_summary(text), inputs=[text_output], outputs=[summary_output])
with gr.TabItem("Summary | TextRank"):
summary_output = gr.Textbox(label="Summary | TextRank")
summarize_button = gr.Button("Summarize")
summarize_button.click(fn=lambda text: text_rank_summary(text), inputs=[text_output], outputs=[summary_output])
with gr.TabItem("Download PDF"):
pdf_text_only = gr.Button("Download PDF with Text Only")
pdf_summary_only = gr.Button("Download PDF with Summary Only")
pdf_both = gr.Button("Download PDF with Both")
pdf_output = gr.File(label="Download PDF")
pdf_text_only.click(fn=lambda text: save_to_pdf(text, ""), inputs=[text_output], outputs=[pdf_output])
pdf_summary_only.click(fn=lambda summary: save_to_pdf("", summary), inputs=[summary_output], outputs=[pdf_output])
pdf_both.click(fn=lambda text, summary: save_to_pdf(text, summary), inputs=[text_output, summary_output], outputs=[pdf_output])
iface.launch(share=True, debug=True)
|