Spaces:
Running
Running
File size: 23,697 Bytes
c43a444 7c4cea5 e583e5b c43a444 e583e5b c43a444 8879278 7c4cea5 c43a444 c637878 c43a444 d1cd9d0 c43a444 7c4cea5 413175c c43a444 a8ba20a c43a444 c857c28 d1cd9d0 c43a444 413175c 30bf09c c43a444 413175c c857c28 c43a444 30bf09c 413175c 54b8ad8 d1cd9d0 e583e5b 14c8553 832ca25 413175c 14c8553 71e14c9 14c8553 c43a444 c0632d6 37bd9f1 14c8553 c43a444 14c8553 413175c 14c8553 413175c 8879278 14c8553 7c4cea5 8879278 413175c 30bf09c d1cd9d0 30bf09c 832ca25 30bf09c d1cd9d0 30bf09c 413175c c43a444 413175c c43a444 413175c c43a444 14c8553 c43a444 413175c c43a444 413175c c43a444 413175c c43a444 413175c c43a444 c857c28 413175c c43a444 413175c c43a444 413175c c43a444 413175c c43a444 413175c c43a444 14c8553 c43a444 14c8553 c43a444 14c8553 413175c c43a444 413175c c43a444 c857c28 413175c c43a444 413175c c43a444 30bf09c c43a444 c857c28 413175c c43a444 8879278 c43a444 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 |
# Constants
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import streamlit as st
from typing import Dict
from utils.llm import summary_generation
ONE_BR_UNITS = 23
TWO_BR_UNITS = 45
SOLAR_PANEL_RATING = 625 # W
BATTERY_CAPACITY = 200 # Ah
BATTERY_VOLTAGE = 96 # V
SYSTEM_LOSSES = 0.20
FEED_IN_TARIFF = 12
# Lighting specifications
LIGHTS_1BR = 5
LIGHTS_2BR = 12
LIGHT_POWER = 6 # Watts per light
def initialize_session_state():
"""Initialize session state variables"""
defaults = {
"solar_panels": 20,
"batteries": 15,
"panel_price": 13000,
"battery_price": 39000,
"grid_price": 28.44,
}
for key, value in defaults.items():
if key not in st.session_state:
st.session_state[key] = value
def calculate_lighting_consumption(occupancy_1br: float, occupancy_2br: float) -> float:
"""Calculate daily lighting consumption"""
return (
(occupancy_1br * ONE_BR_UNITS * LIGHTS_1BR * LIGHT_POWER / 1000)
+ (occupancy_2br * TWO_BR_UNITS * LIGHTS_2BR * LIGHT_POWER / 1000)
) * 6 # 6 hours per day
# assuming that 1br average usage is 250wh and for a 2br is 400wh
def calculate_appliance_consumption(
occupancy_1br: float, occupancy_2br: float
) -> float:
"""Calculate daily appliance consumption by subtracting the lighting usage from the average total consumption for each house type"""
return (
occupancy_1br
* ONE_BR_UNITS
* (3 - (LIGHTS_1BR * LIGHT_POWER * 6 / 1000))
# + (500 * 24) # Fridge
) + (
occupancy_2br
* TWO_BR_UNITS
* (4 - (LIGHTS_2BR * LIGHT_POWER * 6 / 1000))
# + (500 * 24) # Fridge
) # Daily kWh
def total_consumption(
occupancy_1br: float, occupancy_2br: float, common_area: float
) -> float:
"""Calculate total monthly consumption"""
lighting = calculate_lighting_consumption(occupancy_1br, occupancy_2br)
appliances = calculate_appliance_consumption(occupancy_1br, occupancy_2br)
return (lighting + appliances + common_area) * 30 # Monthly kWh
def solar_production(panels: int) -> float:
"""Monthly solar production with losses"""
daily_production = (
panels * SOLAR_PANEL_RATING * 6.5 * (1 - SYSTEM_LOSSES) / 1000
) # 6.5 sun hours
return daily_production * 30 # Monthly kWh
def battery_storage(batteries: int) -> float:
"""Usable battery capacity"""
return batteries * BATTERY_CAPACITY * BATTERY_VOLTAGE * 0.8 / 1000 # kWh
def financial_analysis(
consumption: float,
common_area_consumption: float,
production: float,
storage: float,
) -> Dict:
"""Detailed financial calculations"""
solar_used = min(production, consumption)
surplus = max(0, production - consumption)
feed_in_revenue = surplus * FEED_IN_TARIFF / 100 # Convert to Ksh from cents/kWh
# Account for battery storage
grid_purchased = max(0, consumption - common_area_consumption - solar_used)
if storage > 0:
# Battery can offset some grid purchases
grid_offset = min(grid_purchased, storage)
grid_purchased -= grid_offset
# Money paid to owner if client used this instead o
monthly_savings = (
consumption - (common_area_consumption * 30) * st.session_state.grid_price / 100
)
total_investment = (
st.session_state.solar_panels * st.session_state.panel_price
+ st.session_state.batteries * st.session_state.battery_price
)
# Avoid division by zero
if monthly_savings > 0:
payback_years = total_investment / (monthly_savings * 12)
else:
payback_years = float("inf")
return {
"consumption": consumption,
"production": production,
"solar_contribution": min(100, (solar_used / max(1, consumption)) * 100),
"grid_dependency": (grid_purchased / max(1, consumption)) * 100,
"monthly_savings": monthly_savings,
"payback_period": payback_years,
"grid_purchased": grid_purchased,
}
def create_consumption_breakdown(
occupancy_1br: float, occupancy_2br: float, common_area: float
):
"""Create detailed consumption breakdown"""
breakdown = {
"Lighting": calculate_lighting_consumption(occupancy_1br, occupancy_2br) * 30,
"Appliances": calculate_appliance_consumption(occupancy_1br, occupancy_2br)
* 30,
"Common Areas": common_area * 30,
}
return pd.DataFrame.from_dict(breakdown, orient="index", columns=["kWh"])
# Streamlit Interface
def main():
st.set_page_config(page_title="Solar Analysis Suite", page_icon="🌞", layout="wide")
initialize_session_state()
# Custom CSS
st.markdown(
"""
<style>
.main .block-container {padding-top: 2rem;}
h1, h2, h3 {color: #1E88E5;}
.stExpander {border-radius: 8px; border: 1px solid #1E88E5;}
.stTabs [data-baseweb="tab-list"] {gap: 10px;}
.stTabs [data-baseweb="tab"] {
height: 50px;
white-space: pre-wrap;
background-color: #F0F2F6;
border-radius: 4px 4px 0px 0px;
gap: 1px;
padding-top: 10px;
padding-bottom: 10px;
}
.stTabs [aria-selected="true"] {
background-color: #1E88E5;
color: white;
}
</style>
""",
unsafe_allow_html=True,
)
# Header with logo
col1, col2 = st.columns([1, 4])
with col1:
st.image("https://img.icons8.com/fluency/96/000000/sun.png", width=100)
with col2:
st.title("🌞 Advanced Solar Performance Analyzer")
st.markdown(
"Optimize your apartment complex solar installation with data-driven insights"
)
# Sidebar for system configuration
with st.sidebar:
st.header("System Configuration")
# Add a nice header image
st.image("https://img.icons8.com/color/96/000000/solar-panel.png", width=80)
# Create tabs for different settings
tab1, tab2 = st.tabs(["Hardware", "Pricing"])
with tab1:
st.number_input(
"Number of Solar Panels",
1,
300,
step=5,
key="solar_panels",
help="Each panel rated at 625W",
)
st.number_input(
"Number of Batteries",
0,
150,
step=5,
key="batteries",
help="Each battery has 200Ah capacity at 12V",
)
with tab2:
st.number_input(
"Panel Price (Ksh)",
1000,
50000,
step=500,
key="panel_price",
help="Cost per solar panel",
)
st.number_input(
"Battery Price (Ksh)",
5000,
100000,
step=1000,
key="battery_price",
help="Cost per battery unit",
)
st.number_input(
"Grid Price (Ksh/kWh)",
10.0,
50.0,
step=0.1,
key="grid_price",
help="Current electricity price from the grid",
)
st.markdown("---")
st.markdown(
"""
📊 **System Totals**
- **Total Panel Capacity**: {0:.1f} kW
- **Total Battery Storage**: {1:.1f} kWh
- **Total Investment**: ksh. {2:,.0f}
""".format(
st.session_state.solar_panels * SOLAR_PANEL_RATING / 1000,
battery_storage(st.session_state.batteries),
st.session_state.solar_panels * st.session_state.panel_price
+ st.session_state.batteries * st.session_state.battery_price,
)
)
# Main content
# Create scenarios with varying occupancy levels
scenarios = {}
# Common area consumption remains constant
common_area_consumption = 23.544 # kWh per day
# Generate scenarios with different occupancy combinations
occupancy_levels = [0.0, 0.25, 0.50, 0.75, 1.0]
# Create scenarios for 1BR fixed, varying 2BR
for br1_level in occupancy_levels:
for br2_level in occupancy_levels:
scenario_name = f"1BR: {int(br1_level*100)}%, 2BR: {int(br2_level*100)}%"
scenarios[scenario_name] = {
"1br": br1_level,
"2br": br2_level,
"common": common_area_consumption,
}
# Analysis tabs
st.markdown("---")
tab1, tab2, tab3 = st.tabs(
["📊 Energy Analysis", "💰 Financial Metrics", "🔍 Detailed Breakdown"]
)
# Prepare analysis data for all scenarios
analysis_data = []
for name, params in scenarios.items():
consumption = total_consumption(params["1br"], params["2br"], params["common"])
production = solar_production(st.session_state.solar_panels)
storage = battery_storage(st.session_state.batteries)
financials = financial_analysis(
consumption, common_area_consumption, production, storage
)
analysis_data.append({"Scenario": name, **financials})
df = pd.DataFrame(analysis_data)
# Tab 1: Energy Analysis
with tab1:
st.header("Energy Flow Analysis")
# Allow filtering by 1BR occupancy
one_br_filter = st.selectbox(
"Filter by 1BR Occupancy",
["All"] + [f"{int(level*100)}%" for level in occupancy_levels],
help="Filter scenarios by 1BR occupancy level",
)
# Filter the dataframe based on selection
filtered_df = df
if one_br_filter != "All":
occupancy_value = int(one_br_filter.replace("%", ""))
filtered_df = df[df["Scenario"].str.contains(f"1BR: {occupancy_value}%")]
# Chart 1: Energy Balance
st.subheader("Energy Balance by Scenario")
energy_fig = plt.figure(figsize=(12, 7))
ax = energy_fig.add_subplot(111)
# Create data for stacked bar chart
chart_data = filtered_df.copy()
chart_data["grid_energy"] = chart_data["grid_purchased"]
chart_data["solar_energy"] = (
chart_data["consumption"] - chart_data["grid_purchased"]
)
# Create normalized stacked bar chart
chart_data = chart_data.set_index("Scenario")
energy_proportions = (
chart_data[["solar_energy", "grid_energy"]].div(
chart_data["consumption"], axis=0
)
* 100
)
energy_proportions = energy_proportions.reset_index()
# Reshape for seaborn
energy_melt = pd.melt(
energy_proportions,
id_vars=["Scenario"],
value_vars=["solar_energy", "grid_energy"],
var_name="Energy Source",
value_name="Percentage",
)
# Rename for better labels
energy_melt["Energy Source"] = energy_melt["Energy Source"].replace(
{"solar_energy": "Solar Generated", "grid_energy": "Grid Purchased"}
)
# Plot with seaborn
sns.set_theme(style="whitegrid")
sns.barplot(
data=energy_melt,
x="Scenario",
y="Percentage",
hue="Energy Source",
palette=["#4CAF50", "#F44336"],
ax=ax,
)
ax.set_ylabel("Energy Contribution (%)")
ax.set_title("Energy Source Distribution by Occupancy Scenario")
plt.xticks(rotation=45, ha="right")
plt.tight_layout()
st.pyplot(energy_fig)
# Detailed metrics
col1, col2, col3 = st.columns(3)
with col1:
st.metric(
"Avg. Solar Contribution",
f"{filtered_df['solar_contribution'].mean():.1f}%",
(
f"{filtered_df['solar_contribution'].mean() - 50:.1f}%"
if filtered_df["solar_contribution"].mean() > 50
else f"{filtered_df['solar_contribution'].mean() - 50:.1f}%"
),
)
with col2:
st.metric(
"Avg. Grid Dependency",
f"{filtered_df['grid_dependency'].mean():.1f}%",
(
f"{50 - filtered_df['grid_dependency'].mean():.1f}%"
if filtered_df["grid_dependency"].mean() < 50
else f"{50 - filtered_df['grid_dependency'].mean():.1f}%"
),
)
with col3:
st.metric(
"Production/Consumption Ratio",
f"{(filtered_df['production'].mean() / filtered_df['consumption'].mean() * 100):.1f}%",
)
with st.expander("🔍 Energy Flow Interpretation"):
st.markdown(
"""
**Understanding the Chart:**
- **Solar Contribution**: Percentage of total energy needs met directly by solar production
- **Grid Dependency**: Remaining energy required from the grid
- The ideal scenario shows high solar contribution with minimal grid dependency
**Key Factors Affecting Energy Balance:**
1. **Occupancy Levels**: Higher occupancy means higher consumption, which may exceed solar capacity
2. **Solar System Size**: More panels increase production and reduce grid dependency
3. **Battery Storage**: Helps utilize excess daytime production for nighttime use
"""
)
# Tab 2: Financial Metrics
with tab2:
st.header("Financial Performance Analysis")
# Allow filtering by 2BR occupancy
two_br_filter = st.selectbox(
"Filter by 2BR Occupancy",
["All"] + [f"{int(level*100)}%" for level in occupancy_levels],
help="Filter scenarios by 2BR occupancy level",
)
# Filter the dataframe based on selection
filtered_fin_df = df
if two_br_filter != "All":
occupancy_value = int(two_br_filter.replace("%", ""))
filtered_fin_df = df[
df["Scenario"].str.contains(f"2BR: {occupancy_value}%")
]
# Monthly Savings Chart
st.subheader("Monthly Cost Savings")
# Fix large values
filtered_fin_df["monthly_savings_fixed"] = filtered_fin_df[
"monthly_savings"
].clip(0, 100000)
fig1, ax1 = plt.subplots(figsize=(12, 6))
sns.barplot(
data=filtered_fin_df,
x="Scenario",
y="monthly_savings_fixed",
palette="viridis",
ax=ax1,
)
ax1.set_title("Monthly Cost Savings by Scenario")
ax1.set_ylabel("Ksh")
plt.xticks(rotation=45, ha="right")
plt.tight_layout()
st.pyplot(fig1)
# Payback Period Chart
st.subheader("System Payback Period")
# Fix large values
filtered_fin_df["payback_period_fixed"] = filtered_fin_df[
"payback_period"
].clip(0, 30)
fig2, ax2 = plt.subplots(figsize=(12, 6))
sns.barplot(
data=filtered_fin_df,
x="Scenario",
y="payback_period_fixed",
palette="rocket_r",
ax=ax2,
)
ax2.set_title("Investment Payback Period by Scenario")
ax2.set_ylabel("Years")
plt.xticks(rotation=45, ha="right")
plt.tight_layout()
st.pyplot(fig2)
# Financial summary metrics
col1, col2, col3 = st.columns(3)
with col1:
avg_savings = filtered_fin_df["monthly_savings"].mean()
st.metric(
"Avg. Monthly Savings",
f"{avg_savings:,.0f} Ksh",
(
f"{avg_savings - df['monthly_savings'].mean():,.0f} Ksh"
if avg_savings > df["monthly_savings"].mean()
else f"{avg_savings - df['monthly_savings'].mean():,.0f} Ksh"
),
)
with col2:
min_payback = filtered_fin_df["payback_period"].min()
st.metric(
"Best Payback Period",
f"{min_payback:.1f} years",
help="Shortest time to recover investment",
)
with col3:
total_investment = (
st.session_state.solar_panels * st.session_state.panel_price
+ st.session_state.batteries * st.session_state.battery_price
)
annual_roi = (
(avg_savings * 12 / total_investment) * 100
if total_investment > 0
else 0
)
st.metric(
"Annual ROI", f"{annual_roi:.1f}%", help="Annual Return on Investment"
)
with st.expander("💵 Financial Analysis Details"):
st.markdown(
f"""
**Investment Details:**
- Total Solar Panel Investment: {st.session_state.solar_panels:,} panels × {st.session_state.panel_price:,} Ksh = {st.session_state.solar_panels * st.session_state.panel_price:,} Ksh
- Total Battery Investment: {st.session_state.batteries:,} batteries × {st.session_state.battery_price:,} Ksh = {st.session_state.batteries * st.session_state.battery_price:,} Ksh
- Total System Cost: {total_investment:,} Ksh
**Savings Calculation:**
- Grid Price: {st.session_state.grid_price} Ksh/kWh
- Monthly Savings =(Total Consumption - Common Area) × Grid Price
- Payback Period = Total Investment / Annual Savings
**Filtered Scenario Data:**
"""
)
st.dataframe(
filtered_fin_df[
[
"Scenario",
"consumption",
"production",
"monthly_savings",
"payback_period",
]
].sort_values("monthly_savings", ascending=False),
hide_index=True,
)
# Button to trigger analysis
if st.button("🔍 Analyze Financial Data with LLM"):
with st.spinner("Generating insights with AI..."):
analysis = summary_generation(filtered_fin_df)
st.success("Analysis Complete!")
st.write(analysis) # Display the results
# Tab 3: Detailed Breakdown
with tab3:
st.header("Consumption Breakdown Analysis")
# Select specific scenario for detailed analysis
scenario_select = st.selectbox(
"Select Specific Scenario", list(scenarios.keys())
)
selected_params = scenarios[scenario_select]
# Create consumption breakdown
breakdown_df = create_consumption_breakdown(
selected_params["1br"], selected_params["2br"], selected_params["common"]
)
total_kwh = breakdown_df["kWh"].sum()
# Add percentage column
breakdown_df["Percentage"] = (breakdown_df["kWh"] / total_kwh * 100).round(1)
col1, col2 = st.columns([2, 3])
with col1:
st.subheader("Energy Composition")
# Create a more attractive pie chart
fig3 = plt.figure(figsize=(8, 8))
ax3 = fig3.add_subplot(111)
colors = ["#FF9800", "#2196F3", "#4CAF50"]
explode = (0.1, 0, 0)
wedges, texts, autotexts = ax3.pie(
breakdown_df["kWh"],
labels=breakdown_df.index,
autopct="%1.1f%%",
explode=explode,
colors=colors,
shadow=True,
startangle=90,
textprops={"fontsize": 12},
)
# Equal aspect ratio ensures that pie is drawn as a circle
ax3.axis("equal")
plt.tight_layout()
st.pyplot(fig3)
# Show total consumption
st.metric(
"Total Monthly Consumption",
f"{total_kwh:.1f} kWh",
help="Sum of all consumption components",
)
with col2:
st.subheader("Detailed Component Analysis")
# Show breakdown as a horizontal bar chart
fig4 = plt.figure(figsize=(10, 5))
ax4 = fig4.add_subplot(111)
# Sort by consumption
sorted_df = breakdown_df.sort_values("kWh", ascending=True)
# Create horizontal bar chart
bars = sns.barplot(
y=sorted_df.index, x="kWh", data=sorted_df, palette=colors[::-1], ax=ax4
)
# Add data labels
for i, v in enumerate(sorted_df["kWh"]):
ax4.text(
v + 5,
i,
f"{v:.1f} kWh ({sorted_df['Percentage'].iloc[i]}%)",
va="center",
)
ax4.set_title(f"Energy Consumption Breakdown - {scenario_select}")
ax4.set_xlabel("Monthly Consumption (kWh)")
ax4.set_ylabel("")
plt.tight_layout()
st.pyplot(fig4)
# Add scenario details
st.markdown(
f"""
**Scenario Details:**
- 1BR Units Occupancy: {selected_params['1br']*100:.0f}% ({selected_params['1br']*ONE_BR_UNITS:.0f} units)
- 2BR Units Occupancy: {selected_params['2br']*100:.0f}% ({selected_params['2br']*TWO_BR_UNITS:.0f} units)
- Common Areas Consumption: {selected_params['common']*30:.1f} kWh/month
"""
)
# Insight box
st.info(
f"""
**Key Insights for {scenario_select}:**
- Lighting contributes {breakdown_df.loc['Lighting', 'Percentage']:.1f}% of total consumption
- Common areas account for {breakdown_df.loc['Common Areas', 'Percentage']:.1f}% of the total
- {'2BR units dominate consumption at ' + str(selected_params['2br']*100) + '% occupancy' if selected_params['2br'] > selected_params['1br'] else '1BR units are the primary consumers at ' + str(selected_params['1br']*100) + '% occupancy'}
- Total potential solar offset: {min(solar_production(st.session_state.solar_panels)/total_kwh*100, 100):.1f}%
"""
)
# Footer
st.markdown("---")
st.markdown(
"""
<div style="text-align: center; color: #666;">
<p>Solar Analysis Suite v1.0 | Developed with ❤️ for sustainable energy solutions</p>
</div>
""",
unsafe_allow_html=True,
)
if __name__ == "__main__":
main()
|