File size: 18,883 Bytes
6f96910
 
 
 
f1d641f
7b2918a
 
 
 
 
 
 
 
 
 
 
f1d641f
7b2918a
f1d641f
7b2918a
 
 
 
 
 
f1d641f
7b2918a
 
 
 
 
 
 
6f96910
 
f2cec0b
8a4f49a
f2cec0b
6f96910
8a4f49a
 
 
 
 
f2cec0b
8a4f49a
f2cec0b
 
6f96910
f2cec0b
6f96910
8a4f49a
f2cec0b
 
 
6a02daf
 
 
 
 
 
 
f1d641f
6a02daf
 
 
 
 
 
f2cec0b
7b2918a
6f96910
7b2918a
334ea25
 
 
f1d641f
8a4f49a
ad0bd0b
7b2918a
8a4f49a
334ea25
f2cec0b
 
334ea25
6f96910
 
334ea25
 
 
 
 
 
 
6f96910
 
f2cec0b
334ea25
6f96910
 
 
f1d641f
7b2918a
 
 
 
 
 
 
 
 
 
8a4f49a
7b2918a
 
 
 
 
8a4f49a
7b2918a
 
 
 
 
 
 
 
 
 
 
 
 
 
6f96910
7b2918a
 
f1d641f
7b2918a
 
6f96910
 
 
 
 
7b2918a
6f96910
7b2918a
f1d641f
7b2918a
f1d641f
7b2918a
 
 
6f96910
7b2918a
 
6f96910
7b2918a
 
f1d641f
7b2918a
 
 
 
 
 
6f96910
7b2918a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6f96910
7b2918a
6f96910
 
 
7b2918a
 
f1d641f
7b2918a
 
 
8a4f49a
7b2918a
 
6f96910
 
 
7b2918a
 
 
bffbeec
7b2918a
bffbeec
6f96910
7b2918a
6f96910
7b2918a
8a4f49a
6f96910
7b2918a
bffbeec
7b2918a
6f96910
 
 
7b2918a
 
 
 
6f96910
 
7b2918a
 
6f96910
 
7b2918a
 
6f96910
7b2918a
 
 
 
6f96910
7b2918a
 
6f96910
7b2918a
 
 
 
 
 
 
 
 
 
 
6f96910
 
7b2918a
f1d641f
 
 
 
 
7b2918a
 
 
f1d641f
 
 
 
 
7b2918a
 
f1d641f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7b2918a
f1d641f
 
7b2918a
 
f1d641f
7b2918a
f1d641f
7b2918a
 
f1d641f
7b2918a
 
f1d641f
7b2918a
 
 
 
 
 
6f96910
 
7b2918a
 
334ea25
7b2918a
 
6f96910
7b2918a
 
 
6f96910
7b2918a
 
 
 
 
 
6f96910
 
7b2918a
 
 
 
 
 
 
6f96910
 
 
 
 
7b2918a
 
6f96910
7b2918a
 
 
 
6f96910
f1d641f
 
 
7b2918a
 
6f96910
7b2918a
 
6f96910
7b2918a
f1d641f
 
 
 
 
 
 
 
 
7b2918a
 
 
 
 
 
 
bffbeec
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
#!/usr/bin/env python
# -*- coding: utf-8 -*-

# app.py - RLAnOxPeptide Gradio Web Application
# Final version incorporating user feedback on generator logic and UI controls.

import os
import torch
import torch.nn as nn
import pandas as pd
import joblib
import numpy as np
import gradio as gr
from sklearn.cluster import KMeans
from tqdm import tqdm
import transformers
import time

# Suppress verbose logging from transformers
transformers.logging.set_verbosity_error()

# --------------------------------------------------------------------------
# SECTION 1: CORE CLASS AND FUNCTION DEFINITIONS
# --------------------------------------------------------------------------

# --- Vocabulary Definition ---
AMINO_ACIDS = "ACDEFGHIKLMNPQRSTVWY"
token2id = {aa: i + 2 for i, aa in enumerate(AMINO_ACIDS)}
token2id["<PAD>"] = 0
token2id["<EOS>"] = 1
id2token = {i: t for t, i in token2id.items()}
VOCAB_SIZE = len(token2id)


# --- Feature Extractor Model Class (For ProtT5) ---
class FeatureProtT5Model:
    def __init__(self, base_model_id, finetuned_weights_path=None):
        self.device = "cuda" if torch.cuda.is_available() else "cpu"
        print(f"Initializing ProtT5 for feature extraction on device: {self.device}")

        print(f"Loading base model and tokenizer from '{base_model_id}'...")
        self.tokenizer = transformers.T5Tokenizer.from_pretrained(base_model_id, do_lower_case=False)
        self.model = transformers.T5EncoderModel.from_pretrained(base_model_id)

        if finetuned_weights_path and os.path.exists(finetuned_weights_path):
            print(f"Applying local fine-tuned weights from: {finetuned_weights_path}")
            state_dict = torch.load(finetuned_weights_path, map_location=self.device)
            self.model.load_state_dict(state_dict, strict=False)
            print("Successfully applied fine-tuned weights.")
        else:
            print("Warning: Fine-tuned weights not found or not provided. Using base ProtT5 weights.")

        self.model.to(self.device)
        self.model.eval()

    def encode(self, sequence):
        if not sequence or not isinstance(sequence, str):
            return np.zeros((1, 1024), dtype=np.float32)

        seq_spaced = " ".join(list(sequence))
        encoded_input = self.tokenizer(seq_spaced, return_tensors='pt', padding=True, truncation=True)
        encoded_input = {k: v.to(self.device) for k, v in encoded_input.items()}

        with torch.no_grad():
            embedding = self.model(**encoded_input).last_hidden_state
        
        emb_np = embedding.squeeze(0).cpu().numpy()
        return emb_np if emb_np.shape[0] > 0 else np.zeros((1, 1024), dtype=np.float32)

# --- Predictor Model Architecture ---
class AntioxidantPredictor(nn.Module):
    def __init__(self, input_dim=1914, transformer_layers=3, transformer_heads=4, transformer_dropout=0.1):
        super(AntioxidantPredictor, self).__init__()
        self.prott5_dim = 1024
        self.handcrafted_dim = input_dim - self.prott5_dim
        self.seq_len = 16
        self.prott5_feature_dim = 64

        encoder_layer = nn.TransformerEncoderLayer(d_model=self.prott5_feature_dim, nhead=transformer_heads, dropout=transformer_dropout, batch_first=True)
        self.transformer_encoder = nn.TransformerEncoder(encoder_layer, num_layers=transformer_layers)

        fused_dim = self.prott5_feature_dim + self.handcrafted_dim
        self.fusion_fc = nn.Sequential(nn.Linear(fused_dim, 1024), nn.ReLU(), nn.Dropout(0.3), nn.Linear(1024, 512), nn.ReLU(), nn.Dropout(0.3))
        self.classifier = nn.Sequential(nn.Linear(512, 256), nn.ReLU(), nn.Dropout(0.3), nn.Linear(256, 1))
        self.temperature = nn.Parameter(torch.ones(1), requires_grad=False)

    def forward(self, x):
        batch_size = x.size(0)
        prot_t5_features = x[:, :self.prott5_dim]
        handcrafted_features = x[:, self.prott5_dim:]
        prot_t5_seq = prot_t5_features.view(batch_size, self.seq_len, self.prott5_feature_dim)
        encoded_seq = self.transformer_encoder(prot_t5_seq)
        refined_prott5 = encoded_seq.mean(dim=1)
        fused_features = torch.cat([refined_prott5, handcrafted_features], dim=1)
        fused_output = self.fusion_fc(fused_features)
        logits = self.classifier(fused_output)
        return logits / self.temperature

    def get_temperature(self):
        return self.temperature.item()

# --- Generator Model Architecture ---
class ProtT5Generator(nn.Module):
    def __init__(self, vocab_size, embed_dim=512, num_layers=6, num_heads=8, dropout=0.1):
        super(ProtT5Generator, self).__init__()
        self.embed_tokens = nn.Embedding(vocab_size, embed_dim, padding_idx=token2id["<PAD>"])
        encoder_layer = nn.TransformerEncoderLayer(d_model=embed_dim, nhead=num_heads, dropout=dropout, batch_first=True)
        self.encoder = nn.TransformerEncoder(encoder_layer, num_layers=num_layers)
        self.lm_head = nn.Linear(embed_dim, vocab_size)
        self.vocab_size = vocab_size
        self.eos_token_id = token2id["<EOS>"]
        self.pad_token_id = token2id["<PAD>"]

    def forward(self, input_ids):
        embeddings = self.embed_tokens(input_ids)
        encoder_output = self.encoder(embeddings)
        logits = self.lm_head(encoder_output)
        return logits

    def sample(self, batch_size, max_length=20, device="cpu", temperature=2.5, min_decoded_length=3):
        start_token = torch.randint(2, self.vocab_size, (batch_size, 1), device=device)
        generated = start_token
        for _ in range(max_length - 1):
            logits = self.forward(generated)
            next_logits = logits[:, -1, :] / temperature
            if generated.size(1) < min_decoded_length:
                next_logits[:, self.eos_token_id] = -float("inf")
            probs = torch.softmax(next_logits, dim=-1)
            next_token = torch.multinomial(probs, num_samples=1)
            generated = torch.cat((generated, next_token), dim=1)
        return generated

    def decode(self, token_ids_batch):
        sequences = []
        for ids_tensor in token_ids_batch:
            seq = ""
            for token_id in ids_tensor.tolist()[1:]:
                if token_id == self.eos_token_id: break
                if token_id == self.pad_token_id: continue
                seq += id2token.get(token_id, "")
            sequences.append(seq)
        return sequences

# --- CRITICAL DEPENDENCY: feature_extract.py ---
try:
    from feature_extract import extract_features
except ImportError:
    raise gr.Error("Fatal Error: `feature_extract.py` not found. This file is required. Please upload it to your repository.")

# --- Clustering Logic ---
def cluster_sequences(generator, sequences, num_clusters, device):
    if not sequences or len(sequences) < num_clusters:
        return sequences[:num_clusters]

    with torch.no_grad():
        token_ids_list = []
        max_len = max((len(seq) for seq in sequences), default=0) + 2
        for seq in sequences:
            ids = [token2id.get(aa, 0) for aa in seq] + [generator.eos_token_id]
            ids = [np.random.randint(2, VOCAB_SIZE)] + ids
            ids += [token2id["<PAD>"]] * (max_len - len(ids))
            token_ids_list.append(ids)

        input_ids = torch.tensor(token_ids_list, dtype=torch.long, device=device)
        embeddings = generator.embed_tokens(input_ids)
        mask = (input_ids != token2id["<PAD>"]).unsqueeze(-1).float()
        seq_embeds = (embeddings * mask).sum(dim=1) / (mask.sum(dim=1) + 1e-9)
        seq_embeds_np = seq_embeds.cpu().numpy()

    kmeans = KMeans(n_clusters=int(num_clusters), random_state=42, n_init='auto').fit(seq_embeds_np)
    representatives = []
    for i in range(int(num_clusters)):
        indices = np.where(kmeans.labels_ == i)[0]
        if len(indices) == 0: continue
        cluster_center = kmeans.cluster_centers_[i]
        cluster_embeddings = seq_embeds_np[indices]
        distances = np.linalg.norm(cluster_embeddings - cluster_center, axis=1)
        representative_index = indices[np.argmin(distances)]
        representatives.append(sequences[representative_index])
    return representatives

# --------------------------------------------------------------------------
# SECTION 2: GLOBAL MODEL AND DEPENDENCY LOADING
# --------------------------------------------------------------------------

print("--- Starting Application: Loading all models and dependencies ---")
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"

try:
    # --- Define file paths ---
    PREDICTOR_CHECKPOINT_PATH = "checkpoints/final_rl_model_logitp0.1_calibrated_FINETUNED_PROTT5.pth"
    SCALER_PATH = "checkpoints/scaler_FINETUNED_PROTT5.pkl"
    GENERATOR_CHECKPOINT_PATH = "generator_checkpoints_v3.6/final_generator_model.pth"
    PROTT5_BASE_MODEL_ID = "Rostlab/prot_t5_xl_uniref50"
    FINETUNED_PROTT5_FOR_FEATURES_PATH = "prott5/model/finetuned_prott5.bin"

    # --- Load Predictor Model ---
    print(f"Loading Predictor from: {PREDICTOR_CHECKPOINT_PATH}")
    PREDICTOR_MODEL = AntioxidantPredictor(input_dim=1914)
    PREDICTOR_MODEL.load_state_dict(torch.load(PREDICTOR_CHECKPOINT_PATH, map_location=DEVICE))
    PREDICTOR_MODEL.to(DEVICE)
    PREDICTOR_MODEL.eval()
    print(f"βœ… Predictor model loaded (Temp: {PREDICTOR_MODEL.get_temperature():.4f}).")

    # --- Load Scaler & Feature Extractor ---
    print(f"Loading Scaler from: {SCALER_PATH}")
    SCALER = joblib.load(SCALER_PATH)
    print("Loading ProtT5 Feature Extractor...")
    PROTT5_EXTRACTOR = FeatureProtT5Model(
        base_model_id=PROTT5_BASE_MODEL_ID,
        finetuned_weights_path=FINETUNED_PROTT5_FOR_FEATURES_PATH
    )
    print("βœ… Scaler and Feature Extractor loaded.")

    # --- Load Generator Model ---
    print(f"Loading Generator from: {GENERATOR_CHECKPOINT_PATH}")
    GENERATOR_MODEL = ProtT5Generator(vocab_size=VOCAB_SIZE)
    GENERATOR_MODEL.load_state_dict(torch.load(GENERATOR_CHECKPOINT_PATH, map_location=DEVICE))
    GENERATOR_MODEL.to(DEVICE)
    GENERATOR_MODEL.eval()
    print("βœ… Generator model loaded.")
    
    print("\n--- All models loaded! Gradio app is ready. ---\n")

except Exception as e:
    print(f"πŸ’₯ FATAL ERROR during model loading: {e}")
    raise gr.Error(f"A required model or file could not be loaded. Please check your repository file structure and paths. Error details: {e}")

# --------------------------------------------------------------------------
# SECTION 3: WRAPPER FUNCTIONS FOR GRADIO UI
# --------------------------------------------------------------------------

def predict_peptide_wrapper(sequence_str):
    if not sequence_str or not isinstance(sequence_str, str) or any(c not in AMINO_ACIDS for c in sequence_str.upper()):
        return "0.0000", "Error: Please enter a valid peptide sequence using standard amino acids (ACDEFGHIKLMNPQRSTVWY)."
    
    try:
        features = extract_features(sequence_str.upper(), PROTT5_EXTRACTOR, L_fixed=29, d_model_pe=16)
        scaled_features = SCALER.transform(features.reshape(1, -1))
        
        with torch.no_grad():
            features_tensor = torch.tensor(scaled_features, dtype=torch.float32).to(DEVICE)
            logits = PREDICTOR_MODEL(features_tensor)
            probability = torch.sigmoid(logits).squeeze().item()
        
        classification = "Antioxidant" if probability >= 0.5 else "Non-Antioxidant"
        return f"{probability:.4f}", classification

    except Exception as e:
        print(f"Prediction Error for sequence '{sequence_str}': {e}")
        return "N/A", f"An error occurred during prediction: {e}"

def generate_peptide_wrapper(num_to_generate, min_len, max_len, temperature, diversity_factor, progress=gr.Progress()):
    """
    Handles the full generation-validation-clustering pipeline with a loop to ensure
    the target number of peptides is generated.
    """
    num_to_generate = int(num_to_generate)
    min_len = int(min_len)
    max_len = int(max_len)

    # Safety check for length
    if min_len > max_len:
        gr.Warning("Minimum Length cannot be greater than Maximum Length. Adjusting min_len = max_len.")
        min_len = max_len
    
    try:
        validated_pool = {}  # Use a dictionary to store unique sequences and their probabilities
        attempts = 0
        max_attempts = 20  # Safety break to prevent infinite loops
        generation_batch_size = 200 # Number of sequences to generate in each attempt

        while len(validated_pool) < num_to_generate and attempts < max_attempts:
            progress(len(validated_pool) / num_to_generate, desc=f"Found {len(validated_pool)} / {num_to_generate} peptides. (Attempt {attempts+1}/{max_attempts})")

            # Generate a batch of candidate sequences
            with torch.no_grad():
                generated_tokens = GENERATOR_MODEL.sample(
                    batch_size=generation_batch_size, max_length=max_len, device=DEVICE,
                    temperature=temperature, min_decoded_length=min_len
                )
            decoded_sequences = GENERATOR_MODEL.decode(generated_tokens)
            
            # Filter for length and uniqueness
            new_candidates = []
            for seq in decoded_sequences:
                if min_len <= len(seq) <= max_len:
                    if seq not in validated_pool:
                        new_candidates.append(seq)
            
            # Validate the new, unique candidates
            for seq in new_candidates:
                prob_str, _ = predict_peptide_wrapper(seq)
                try:
                    prob = float(prob_str)
                    if prob > 0.90:
                        validated_pool[seq] = prob
                        # Check if we have reached the target
                        if len(validated_pool) >= num_to_generate:
                            break 
                except (ValueError, TypeError):
                    continue
            
            attempts += 1
            if len(validated_pool) >= num_to_generate:
                break 
        
        progress(1.0, desc=f"Collected {len(validated_pool)} high-quality peptides. Clustering for diversity...")
        time.sleep(1)

        if not validated_pool:
            return pd.DataFrame([{"Sequence": "Could not generate any high-activity peptides (>0.9 prob) with the current settings. Try different parameters.", "Predicted Probability": "N/A"}])
        
        # --- Final Processing ---
        high_quality_sequences = list(validated_pool.keys())
        
        # Cluster to ensure diversity, selecting up to the target number
        final_diverse_seqs = cluster_sequences(GENERATOR_MODEL, high_quality_sequences, num_to_generate, DEVICE)
        
        # Format final results into a DataFrame
        final_results = [(seq, f"{validated_pool[seq]:.4f}") for seq in final_diverse_seqs]
        final_results.sort(key=lambda x: float(x[1]), reverse=True)
        
        return pd.DataFrame(final_results, columns=["Sequence", "Predicted Probability"])

    except Exception as e:
        print(f"Generation Pipeline Error: {e}")
        return pd.DataFrame([{"Sequence": f"An error occurred during generation: {e}", "Predicted Probability": "N/A"}])

# --------------------------------------------------------------------------
# SECTION 4: GRADIO UI CONSTRUCTION
# --------------------------------------------------------------------------
with gr.Blocks(theme=gr.themes.Soft(), title="RLAnOxPeptide") as demo:
    gr.Markdown("# RLAnOxPeptide: Intelligent Peptide Design and Prediction")
    gr.Markdown("An integrated framework combining reinforcement learning and a Transformer model for the efficient prediction and innovative design of antioxidant peptides.")

    with gr.Tabs():
        # --- PREDICTION TAB ---
        with gr.TabItem("Peptide Activity Predictor"):
            gr.Markdown("### Enter an amino acid sequence to predict its antioxidant activity.")
            with gr.Row():
                peptide_input = gr.Textbox(label="Peptide Sequence", placeholder="e.g., WHYHDYKY", scale=3)
                predict_button = gr.Button("Predict", variant="primary", scale=1)
            with gr.Row():
                probability_output = gr.Textbox(label="Predicted Probability", interactive=False)
                class_output = gr.Textbox(label="Predicted Class", interactive=False)
            
            predict_button.click(
                fn=predict_peptide_wrapper,
                inputs=peptide_input,
                outputs=[probability_output, class_output]
            )
            gr.Examples(
                examples=[["WHYHDYKY"], ["YPGG"], ["LVLHEHGGN"], ["WKYG"]],
                inputs=peptide_input,
                fn=predict_peptide_wrapper,
                outputs=[probability_output, class_output],
                cache_examples=True
            )

        # --- GENERATION TAB ---
        with gr.TabItem("Novel Sequence Generator"):
            gr.Markdown("### Set parameters to generate novel, high-activity antioxidant peptides.")
            with gr.Column():
                with gr.Row():
                    num_input = gr.Slider(minimum=5, maximum=50, value=10, step=1, label="Number of Final Peptides to Generate")
                    # βœ… MODIFIED: Length sliders both have a range of 2-20
                    min_len_input = gr.Slider(minimum=2, maximum=20, value=3, step=1, label="Minimum Length")
                    max_len_input = gr.Slider(minimum=2, maximum=20, value=20, step=1, label="Maximum Length")
                with gr.Row():
                    temp_input = gr.Slider(minimum=0.5, maximum=3.0, value=2.5, step=0.1, label="Temperature (Higher = More random)")
                    diversity_input = gr.Slider(minimum=1.1, maximum=5.0, value=1.5, step=0.1, label="Diversity Factor (Larger initial pool for clustering)")
            
            generate_button = gr.Button("Generate Peptides", variant="primary")
            results_output = gr.DataFrame(headers=["Sequence", "Predicted Probability"], label="Generated & Validated Peptides (>90% Probability)", wrap=True)

            # βœ… ADDED: Dynamic linking of min and max length sliders for better UX
            def update_min_len_range(max_len):
                return gr.Slider(maximum=max_len)
            max_len_input.change(fn=update_min_len_range, inputs=max_len_input, outputs=min_len_input)

            def update_max_len_range(min_len):
                return gr.Slider(minimum=min_len)
            min_len_input.change(fn=update_max_len_range, inputs=min_len_input, outputs=max_len_input)

            generate_button.click(
                fn=generate_peptide_wrapper,
                inputs=[num_input, min_len_input, max_len_input, temp_input, diversity_input],
                outputs=results_output
            )

if __name__ == "__main__":
    demo.launch()