Spaces:
Runtime error
Runtime error
File size: 14,227 Bytes
db70732 f302c17 db70732 f302c17 f86c87e f302c17 b0ead86 e570bda 90e73d9 f302c17 90e73d9 f4e036a b0ead86 f86c87e f302c17 90e73d9 d9c493b b0ead86 f86c87e b0ead86 d9c493b 90e73d9 f302c17 f86c87e f302c17 90e73d9 f86c87e f302c17 e570bda db70732 b0ead86 e570bda f302c17 b0ead86 90e73d9 b0ead86 90e73d9 db70732 f4e036a f302c17 db70732 f302c17 db70732 f4e036a db70732 f4e036a db70732 f4e036a db70732 f4e036a db70732 b0ead86 f4e036a db70732 90e73d9 f302c17 db70732 f302c17 90e73d9 f302c17 90e73d9 db70732 f302c17 db70732 f302c17 db70732 f302c17 db70732 f302c17 90e73d9 f302c17 90e73d9 f302c17 90e73d9 f302c17 db70732 90e73d9 f302c17 db70732 90e73d9 f302c17 b0ead86 f302c17 db70732 f302c17 db70732 f302c17 db70732 f302c17 90e73d9 354bf5f f302c17 db70732 90e73d9 f302c17 db70732 f302c17 354bf5f 90e73d9 f302c17 90e73d9 f302c17 90e73d9 354bf5f 90e73d9 46a6686 db70732 354bf5f f4e036a ec59101 354bf5f f86c87e b0ead86 90e73d9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 |
"""NetCom → WooCommerce transformer (Try 2 schema — 100-parallel + de-dupe, pandas fix)
======================================================================================
*Accept CSV **or** Excel schedule files and output the WooCommerce CSV.*
New since the last paste
------------------------
* Fix for older pandas: move `include_groups=False` from `.groupby()` to `.apply()`.
* Everything else (cache names, concurrency cap, in-flight de-duplication) is unchanged.
"""
from __future__ import annotations
import asyncio
import hashlib
import json
import os
import tempfile
from io import BytesIO
from pathlib import Path
import gradio as gr
import gradio_client.utils
import openai
import pandas as pd
# -------- Gradio bool-schema hot-patch --------------------------------------
_original = gradio_client.utils._json_schema_to_python_type
def _fixed_json_schema_to_python_type(schema, defs=None): # type: ignore
if isinstance(schema, bool):
return "any"
return _original(schema, defs)
gradio_client.utils._json_schema_to_python_type = _fixed_json_schema_to_python_type # type: ignore
# -------- Tiny disk cache ----------------------------------------------------
CACHE_DIR = Path("ai_response_cache")
CACHE_DIR.mkdir(exist_ok=True)
def _cache_path(p: str) -> Path:
return CACHE_DIR / f"{hashlib.md5(p.encode()).hexdigest()}.json"
def _get_cached(p: str) -> str | None:
try:
return json.loads(_cache_path(p).read_text("utf-8"))["response"]
except Exception:
return None
def _set_cache(p: str, r: str) -> None:
try:
_cache_path(p).write_text(json.dumps({"prompt": p, "response": r}), "utf-8")
except Exception:
pass
# -------- Async GPT helpers --------------------------------------------------
_SEM = asyncio.Semaphore(100) # ≤100 concurrent OpenAI calls
_inflight: dict[str, asyncio.Future] = {} # prompt → Future
async def _gpt_async(client: openai.AsyncOpenAI, prompt: str) -> str:
"""Single LLM call with disk cache, concurrency cap, and de-duplication."""
cached = _get_cached(prompt)
if cached is not None:
return cached
# De-duplicate identical prompts already in flight
running = _inflight.get(prompt)
if running is not None:
return await running
loop = asyncio.get_running_loop()
async def _call_api() -> str:
async with _SEM: # concurrency limiter
try:
msg = await client.chat.completions.create(
model="gpt-4o-mini",
messages=[{"role": "user", "content": prompt}],
temperature=0,
)
text = msg.choices[0].message.content
except Exception as exc:
text = f"Error: {exc}"
_set_cache(prompt, text)
return text
task = loop.create_task(_call_api())
_inflight[prompt] = task
try:
return await task
finally:
_inflight.pop(prompt, None)
async def _batch_async(lst: list[str], instruction: str, client: openai.AsyncOpenAI) -> list[str]:
"""Vectorised helper — returns an output list matching *lst* length."""
out: list[str] = ["" for _ in lst]
idx, prompts = [], []
for i, txt in enumerate(lst):
if isinstance(txt, str) and txt.strip():
idx.append(i)
prompts.append(f"{instruction}\n\nText: {txt}")
if not prompts:
return out
responses = await asyncio.gather(*[_gpt_async(client, p) for p in prompts])
for j, val in enumerate(responses):
out[idx[j]] = val
return out
# -------- Core converter -----------------------------------------------------
DEFAULT_PREREQ = (
"No specific prerequisites are required for this course. Basic computer literacy and "
"familiarity with fundamental concepts in the subject area are recommended for the best "
"learning experience."
)
def _read(path: str) -> pd.DataFrame:
if path.lower().endswith((".xlsx", ".xls")):
return pd.read_excel(path)
return pd.read_csv(path, encoding="latin1")
async def _enrich_dataframe(
df: pd.DataFrame, dcol: str, ocol: str, pcol: str, acol: str
) -> tuple[list[str], list[str], list[str], list[str], list[str]]:
"""Run all LLM batches concurrently and return the five enrichment columns."""
async with openai.AsyncOpenAI(api_key=os.getenv("OPENAI_API_KEY")) as client:
sdesc, ldesc, fobj, fout = await asyncio.gather(
_batch_async(
df.get(dcol, "").fillna("").tolist(),
"Create a concise 250-character summary of this course description:",
client,
),
_batch_async(
df.get(dcol, "").fillna("").tolist(),
"Condense this description to a maximum of 750 characters in paragraph format, with clean formatting:",
client,
),
_batch_async(
df.get(ocol, "").fillna("").tolist(),
"Format these objectives into a bullet list with clean formatting. Start each bullet with '• ':",
client,
),
_batch_async(
df.get(acol, "").fillna("").tolist(),
"Format this agenda into a bullet list with clean formatting. Start each bullet with '• ':",
client,
),
)
# Prerequisites (some rows empty → default text)
prereq_raw = df.get(pcol, "").fillna("").tolist()
fpre: list[str] = []
for req in prereq_raw:
if not str(req).strip():
fpre.append(DEFAULT_PREREQ)
else:
formatted = await _batch_async(
[req],
"Format these prerequisites into a bullet list with clean formatting. Start each bullet with '• ':",
client,
)
fpre.append(formatted[0])
return sdesc, ldesc, fobj, fout, fpre
def convert(path: str) -> BytesIO:
logos = {
"Amazon Web Services": "/wp-content/uploads/2025/04/aws.png",
"Cisco": "/wp-content/uploads/2025/04/cisco-e1738593292198-1.webp",
"Microsoft": "/wp-content/uploads/2025/04/Microsoft-e1737494120985-1.png",
"Google Cloud": "/wp-content/uploads/2025/04/Google_Cloud.png",
"EC Council": "/wp-content/uploads/2025/04/Ec_Council.png",
"ITIL": "/wp-content/uploads/2025/04/ITIL.webp",
"PMI": "/wp-content/uploads/2025/04/PMI.png",
"Comptia": "/wp-content/uploads/2025/04/Comptia.png",
"Autodesk": "/wp-content/uploads/2025/04/autodesk.png",
"ISC2": "/wp-content/uploads/2025/04/ISC2.png",
"AICerts": "/wp-content/uploads/2025/04/aicerts-logo-1.png",
}
df = _read(path)
df.columns = df.columns.str.strip()
first_col = lambda *candidates: next((c for c in candidates if c in df.columns), None)
dcol = first_col("Description", "Decription")
ocol = first_col("Objectives", "objectives")
pcol = first_col("RequiredPrerequisite", "Required Pre-requisite")
acol = first_col("Outline")
dur = first_col("Duration") or "Duration"
sid = first_col("Course SID", "Course SID")
if dur not in df.columns:
df[dur] = "" # ensure Duration column exists
# ---------- LLM enrichment (async) -------------------------------------
sdesc, ldesc, fobj, fout, fpre = asyncio.run(
_enrich_dataframe(df, dcol, ocol, pcol, acol)
)
df["Short_Description"] = sdesc
df["Condensed_Description"] = ldesc
df["Formatted_Objectives"] = fobj
df["Formatted_Agenda"] = fout
df["Formatted_Prerequisites"] = fpre
# ---------- Schedule aggregation --------------------------------------
df["Course Start Date"] = pd.to_datetime(df["Course Start Date"], errors="coerce")
df["Date_fmt"] = df["Course Start Date"].dt.strftime("%-m/%-d/%Y")
dsorted = df.sort_values(["Course ID", "Course Start Date"])
d_agg = (
dsorted.groupby("Course ID")["Date_fmt"]
.apply(lambda s: ",".join(s.dropna().unique()))
.reset_index(name="Dates")
)
t_agg = (
dsorted.groupby("Course ID", group_keys=False)
.apply(
lambda g: ",".join(
f"{st}-{et} {tz}"
for st, et, tz in zip(
g["Course Start Time"], g["Course End Time"], g["Time Zone"]
)
),
include_groups=False, # <- moved here
)
.reset_index(name="Times")
)
parents = dsorted.drop_duplicates("Course ID").merge(d_agg).merge(t_agg)
# ---------- Parent / child product rows --------------------------------
parent = pd.DataFrame(
{
"Type": "variable",
"SKU": parents["Course ID"],
"Name": parents["Course Name"],
"Published": 1,
"Visibility in catalog": "visible",
"Short description": parents["Short_Description"],
"Description": parents["Condensed_Description"],
"Tax status": "taxable",
"In stock?": 1,
"Stock": 1,
"Sold individually?": 1,
"Regular price": parents["SRP Pricing"].replace("[\\$,]", "", regex=True),
"Categories": "courses",
"Images": parents["Vendor"].map(logos).fillna(""),
"Parent": "",
"Brands": parents["Vendor"],
"Attribute 1 name": "Date",
"Attribute 1 value(s)": parents["Dates"],
"Attribute 1 visible": "visible",
"Attribute 1 global": 1,
"Attribute 2 name": "Location",
"Attribute 2 value(s)": "Virtual",
"Attribute 2 visible": "visible",
"Attribute 2 global": 1,
"Attribute 3 name": "Time",
"Attribute 3 value(s)": parents["Times"],
"Attribute 3 visible": "visible",
"Attribute 3 global": 1,
"Meta: outline": parents["Formatted_Agenda"],
"Meta: days": parents[dur],
"Meta: location": "Virtual",
"Meta: overview": parents["Target Audience"],
"Meta: objectives": parents["Formatted_Objectives"],
"Meta: prerequisites": parents["Formatted_Prerequisites"],
"Meta: agenda": parents["Formatted_Agenda"],
}
)
child = pd.DataFrame(
{
"Type": "variation, virtual",
"SKU": dsorted[sid].astype(str).str.strip(),
"Name": dsorted["Course Name"],
"Published": 1,
"Visibility in catalog": "visible",
"Short description": dsorted["Short_Description"],
"Description": dsorted["Condensed_Description"],
"Tax status": "taxable",
"In stock?": 1,
"Stock": 1,
"Sold individually?": 1,
"Regular price": dsorted["SRP Pricing"].replace("[\\$,]", "", regex=True),
"Categories": "courses",
"Images": dsorted["Vendor"].map(logos).fillna(""),
"Parent": dsorted["Course ID"],
"Brands": dsorted["Vendor"],
"Attribute 1 name": "Date",
"Attribute 1 value(s)": dsorted["Date_fmt"],
"Attribute 1 visible": "visible",
"Attribute 1 global": 1,
"Attribute 2 name": "Location",
"Attribute 2 value(s)": "Virtual",
"Attribute 2 visible": "visible",
"Attribute 2 global": 1,
"Attribute 3 name": "Time",
"Attribute 3 value(s)": dsorted.apply(
lambda r: f"{r['Course Start Time']}-{r['Course End Time']} {r['Time Zone']}",
axis=1,
),
"Attribute 3 visible": "visible",
"Attribute 3 global": 1,
"Meta: outline": dsorted["Formatted_Agenda"],
"Meta: days": dsorted[dur],
"Meta: location": "Virtual",
"Meta: overview": dsorted["Target Audience"],
"Meta: objectives": dsorted["Formatted_Objectives"],
"Meta: prerequisites": dsorted["Formatted_Prerequisites"],
"Meta: agenda": dsorted["Formatted_Agenda"],
}
)
all_rows = pd.concat([parent, child], ignore_index=True)
order = [
"Type",
"SKU",
"Name",
"Published",
"Visibility in catalog",
"Short description",
"Description",
"Tax status",
"In stock?",
"Stock",
"Sold individually?",
"Regular price",
"Categories",
"Images",
"Parent",
"Brands",
"Attribute 1 name",
"Attribute 1 value(s)",
"Attribute 1 visible",
"Attribute 1 global",
"Attribute 2 name",
"Attribute 2 value(s)",
"Attribute 2 visible",
"Attribute 2 global",
"Attribute 3 name",
"Attribute 3 value(s)",
"Attribute 3 visible",
"Attribute 3 global",
"Meta: outline",
"Meta: days",
"Meta: location",
"Meta: overview",
"Meta: objectives",
"Meta: prerequisites",
"Meta: agenda",
]
out = BytesIO()
all_rows[order].to_csv(out, index=False, encoding="utf-8-sig")
out.seek(0)
return out
# -------- Gradio wrappers ----------------------------------------------------
def process_file(upload: gr.File) -> str:
csv_bytes = convert(upload.name)
with tempfile.NamedTemporaryFile(delete=False, suffix=".csv") as tmp:
tmp.write(csv_bytes.getvalue())
path = tmp.name
return path
ui = gr.Interface(
fn=process_file,
inputs=gr.File(
label="Upload NetCom CSV / Excel", file_types=[".csv", ".xlsx", ".xls"]
),
outputs=gr.File(label="Download WooCommerce CSV"),
title="NetCom → WooCommerce CSV Processor (Try 2)",
description="Upload NetCom schedule (.csv/.xlsx) to get the Try 2-formatted WooCommerce CSV.",
analytics_enabled=False,
)
if __name__ == "__main__":
if not os.getenv("OPENAI_API_KEY"):
print("⚠️ OPENAI_API_KEY not set – AI features will error")
ui.launch()
|