Spaces:
Paused
Paused
File size: 20,124 Bytes
7bd6234 b3a4de8 7bd6234 b3a4de8 7bd6234 b3a4de8 998302b b3a4de8 85f4b3d b3a4de8 998302b 85f4b3d b3a4de8 85f4b3d b3a4de8 52ecb53 b3a4de8 85f4b3d b3a4de8 f1ee120 b3a4de8 85f4b3d b3a4de8 85f4b3d b3a4de8 85f4b3d b3a4de8 85f4b3d b3a4de8 7bd6234 b3a4de8 85f4b3d b3a4de8 998302b b3a4de8 b21a788 998302b 7bd6234 998302b 7bd6234 998302b 7bd6234 998302b 7bd6234 998302b 7bd6234 998302b 7bd6234 998302b b3a4de8 7bd6234 b3a4de8 7bd6234 b3a4de8 7aec7ed 7bd6234 b21a788 b3a4de8 998302b 7bd6234 b21a788 7bd6234 b21a788 b3a4de8 b21a788 b3a4de8 692b43b b21a788 b3a4de8 b21a788 b3a4de8 998302b 7aec7ed b3a4de8 b21a788 b3a4de8 b21a788 7aec7ed 998302b 7aec7ed 998302b 7aec7ed b21a788 7bd6234 b3a4de8 b21a788 998302b b21a788 998302b b21a788 b3a4de8 b21a788 b3a4de8 b21a788 b3a4de8 b21a788 b3a4de8 b21a788 b3a4de8 998302b b3a4de8 7bd6234 998302b 7bd6234 998302b b21a788 7bd6234 b21a788 7aec7ed b21a788 7aec7ed b3a4de8 7bd6234 b21a788 b3a4de8 b21a788 b3a4de8 b21a788 b3a4de8 b21a788 b3a4de8 b21a788 b3a4de8 b21a788 998302b b21a788 998302b b21a788 998302b b21a788 998302b b21a788 998302b b21a788 998302b b21a788 998302b b21a788 b3a4de8 b21a788 998302b b21a788 998302b b21a788 998302b b21a788 998302b b21a788 998302b 7bd6234 998302b 7bd6234 b21a788 7bd6234 b21a788 7bd6234 b21a788 7bd6234 998302b 7bd6234 b3a4de8 7bd6234 b3a4de8 7bd6234 85f4b3d b3a4de8 7bd6234 f1ee120 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 |
import spaces
import gradio as gr
import torch
from transformers import AutoModel, AutoTokenizer
from PIL import Image
import base64
import io
import os
import json
from huggingface_hub import login
from pdf2image import convert_from_bytes
from datetime import datetime
# Set your HF token
HF_TOKEN = os.getenv("HUGGING_FACE_HUB_TOKEN")
if HF_TOKEN:
login(token=HF_TOKEN)
# Global variables for model caching
_model = None
_tokenizer = None
def load_model():
"""Load MiniCPM model"""
global _model, _tokenizer
if _model is not None and _tokenizer is not None:
return _model, _tokenizer
try:
_tokenizer = AutoTokenizer.from_pretrained(
"openbmb/MiniCPM-V-2_6",
trust_remote_code=True,
use_fast=True
)
_model = AutoModel.from_pretrained(
"openbmb/MiniCPM-V-2_6",
trust_remote_code=True,
torch_dtype=torch.float16,
device_map="auto"
)
return _model, _tokenizer
except Exception as e:
print(f"Error loading gated model: {e}")
_tokenizer = AutoTokenizer.from_pretrained(
"openbmb/MiniCPM-V-2",
trust_remote_code=True,
use_fast=True
)
_model = AutoModel.from_pretrained(
"openbmb/MiniCPM-V-2",
trust_remote_code=True,
torch_dtype=torch.float16,
device_map="auto"
)
return _model, _tokenizer
def pdf_to_images(pdf_file):
"""Convert PDF file to list of PIL images"""
try:
if hasattr(pdf_file, 'read'):
pdf_bytes = pdf_file.read()
else:
with open(pdf_file, 'rb') as f:
pdf_bytes = f.read()
images = convert_from_bytes(pdf_bytes, dpi=300)
return images
except Exception as e:
print(f"Error converting PDF to images: {e}")
return []
def clean_empty_fields(data):
"""Recursively remove empty fields from dictionary"""
if not isinstance(data, dict):
return data
cleaned = {}
for key, value in data.items():
if isinstance(value, dict):
cleaned_value = clean_empty_fields(value)
if cleaned_value: # Only add if not empty
cleaned[key] = cleaned_value
elif isinstance(value, list):
if value: # Only add if list is not empty
cleaned_list = []
for item in value:
if isinstance(item, dict):
cleaned_item = clean_empty_fields(item)
if cleaned_item:
cleaned_list.append(cleaned_item)
elif item: # Not empty
cleaned_list.append(item)
if cleaned_list:
cleaned[key] = cleaned_list
elif value not in [None, "", [], {}]: # Not empty
cleaned[key] = value
return cleaned
def get_comprehensive_medical_extraction_prompt():
"""Complete medical data extraction prompt with all fields"""
return """You are a deterministic medical data extraction engine. You will receive a single page from a medical document. Your task is to extract ALL visible information from this page and return it in the exact JSON format below.
Your response MUST follow this exact JSON format:
{
"page_analysis": {
"page_contains_text": true,
"page_type": "cover_page|patient_demographics|insurance|medical_history|referral_info|other",
"overall_page_confidence": 0.0,
"all_visible_text": "Complete text transcription of everything visible on this page"
},
"extracted_data": {
"date_of_receipt": "",
"patient_first_name": "",
"patient_last_name": "",
"patient_dob": "",
"patient_gender": "",
"patient_primary_phone_number": "",
"patient_secondary_phone_number": "",
"patient_email": "",
"patient_address": "",
"patient_zip_code": "",
"referral_source": "",
"referral_source_phone_no": "",
"referral_source_fax_no": "",
"referral_source_email": "",
"primary_insurance": {
"payer_name": "",
"member_id": "",
"group_id": ""
},
"secondary_insurance": {
"payer_name": "",
"member_id": "",
"group_id": ""
},
"tertiary_insurance": {
"payer_name": "",
"member_id": "",
"group_id": ""
},
"priority": "",
"reason_for_referral": "",
"diagnosis_informations": [
{
"code": "",
"description": ""
}
],
"refine_reason": "",
"additional_medical_info": "",
"provider_names": [],
"appointment_dates": [],
"medication_info": [],
"other_important_details": ""
},
"confidence_scores": {
"date_of_receipt": 0.0,
"patient_first_name": 0.0,
"patient_last_name": 0.0,
"patient_dob": 0.0,
"patient_gender": 0.0,
"patient_primary_phone_number": 0.0,
"patient_secondary_phone_number": 0.0,
"patient_email": 0.0,
"patient_address": 0.0,
"patient_zip_code": 0.0,
"referral_source": 0.0,
"referral_source_phone_no": 0.0,
"referral_source_fax_no": 0.0,
"referral_source_email": 0.0,
"primary_insurance": {
"payer_name": 0.0,
"member_id": 0.0,
"group_id": 0.0
},
"secondary_insurance": {
"payer_name": 0.0,
"member_id": 0.0,
"group_id": 0.0
},
"tertiary_insurance": {
"payer_name": 0.0,
"member_id": 0.0,
"group_id": 0.0
},
"priority": 0.0,
"reason_for_referral": 0.0,
"diagnosis_informations": 0.0,
"refine_reason": 0.0
},
"fields_found_on_this_page": [],
"metadata": {
"extraction_timestamp": "",
"model_used": "MiniCPM-V-2_6-GPU",
"page_processing_notes": ""
}
}
--------------------------------
STRICT FIELD FORMATTING RULES:
--------------------------------
β’ Dates: Format as MM/DD/YYYY only
β’ Phone numbers: Use digits and hyphens only (e.g., 406-596-1901), no extensions or parentheses
β’ Gender: "Male", "Female", or "Other" only
β’ Email: Must contain @ and valid domain, otherwise leave empty
β’ Zip code: Only extract as last 5 digits of address
--------------------------------
REFERRAL SOURCE RULES:
--------------------------------
β’ Extract clinic/hospital/facility name ONLY β never the provider's name
β’ Use facility's phone/fax/email, not individual provider's contact
β’ Prefer header/fax banner for referral source over body text
β’ Do not extract receiver clinic names (e.g., Frontier Psychiatry) as referral source
--------------------------------
INSURANCE EXTRACTION FORMAT:
--------------------------------
Each tier must follow this structure:
"primary_insurance": {
"payer_name": "string",
"member_id": "string",
"group_id": "string"
},
"secondary_insurance": { ... },
"tertiary_insurance": { ... }
β’ Use "member_id" for any ID (Policy, Insurance ID, Subscriber ID, etc.)
β’ Use "group_id" ONLY if explicitly labeled as "Group ID", "Group Number", etc.
β’ Leave all fields empty if "Self Pay" is indicated
--------------------------------
DIAGNOSIS EXTRACTION RULES:
--------------------------------
β’ Extract diagnosis codes AND their descriptions
β’ If only code is present, set description to "" and confidence β€ 0.6
β’ DO NOT infer description from ICD code
--------------------------------
CONFIDENCE SCORING:
--------------------------------
Assign realistic confidence (0.0β1.0) per field, e.g.:
β’ 0.95β1.0 β Clearly labeled, unambiguous data
β’ 0.7β0.94 β Some uncertainty (low quality, odd format)
β’ 0.0β0.6 β Missing, ambiguous, or noisy data
β’ Use float precision (e.g., 0.87, not just 1.0)
Always populate the `confidence_scores` dictionary with the same structure as `extracted_data`.
--------------------------------
CRITICAL INSTRUCTIONS:
--------------------------------
1. READ EVERYTHING: Transcribe all visible text in "all_visible_text"
2. EXTRACT PRECISELY: Only extract what's actually visible on THIS page
3. NO ASSUMPTIONS: Don't guess or infer information not present
4. FIELD CLASSIFICATION: List which fields were actually found in "fields_found_on_this_page"
5. CONFIDENCE: Be realistic - 0.0 if not found, up to 1.0 if completely certain
6. FORMAT EXACTLY: Follow date/phone/address formatting rules strictly
7. JSON ONLY: Return only valid JSON, no other text
This is ONE PAGE of a multi-page document. Extract only what's visible on this specific page."""
def extract_single_page(image, extraction_prompt, model, tokenizer):
"""Extract data from a single page with comprehensive medical fields"""
try:
if hasattr(image, 'convert'):
image = image.convert('RGB')
response = model.chat(
image=image,
msgs=[{
"role": "user",
"content": extraction_prompt
}],
tokenizer=tokenizer,
sampling=False,
temperature=0.1,
max_new_tokens=4000
)
# Try to parse JSON
try:
parsed_data = json.loads(response)
# Clean empty fields
cleaned_data = clean_empty_fields(parsed_data)
return cleaned_data if cleaned_data else None
except json.JSONDecodeError:
return None
except Exception as e:
print(f"Error extracting from page: {e}")
return None
@spaces.GPU(duration=180) # 3 minutes
def extract_pages_clean_json(pdf_file, custom_prompt=None):
"""Extract each page individually - RETURN ONLY NON-EMPTY JSON DATA"""
try:
if pdf_file is None:
return {"error": "No PDF provided"}
# Convert PDF to images
print("Converting PDF to images...")
images = pdf_to_images(pdf_file)
if not images:
return {"error": "Could not convert PDF"}
print(f"Processing {len(images)} pages individually...")
# Load model once
model, tokenizer = load_model()
extraction_prompt = custom_prompt or get_comprehensive_medical_extraction_prompt()
# Process each page and collect only non-empty JSON
page_results = {}
for i, image in enumerate(images):
print(f"Extracting page {i+1}/{len(images)}...")
page_json = extract_single_page(image, extraction_prompt, model, tokenizer)
# Only add to results if page contains data
if page_json:
page_results[f"page_{i+1}"] = page_json
return page_results # Return only pages with data
except Exception as e:
return {"error": str(e)}
def create_gradio_interface():
with gr.Blocks(title="Clean Medical eFax Extractor", theme=gr.themes.Soft()) as demo:
gr.Markdown("# π₯ Clean Medical eFax Data Extractor")
gr.Markdown("π **Returns Only Non-Empty Data** - Clean page-by-page extraction without empty fields")
with gr.Tab("π Clean JSON Extraction"):
with gr.Row():
with gr.Column():
pdf_input = gr.File(
file_types=[".pdf"],
label="Upload Medical eFax PDF",
file_count="single"
)
with gr.Accordion("π§ Custom Prompt", open=False):
prompt_input = gr.Textbox(
value="",
label="Custom Extraction Prompt (optional)",
lines=4,
placeholder="Leave empty for comprehensive medical extraction..."
)
extract_btn = gr.Button("π Extract Clean JSON", variant="primary", size="lg")
gr.Markdown("""
### β
Clean Output Features
- **No Empty Fields**: Only fields with actual data
- **No Empty Pages**: Only pages containing information
- **Easier Combination**: Clean structure for AI merging
- **Optimized Size**: Reduced JSON payload
""")
with gr.Column():
status_output = gr.Textbox(label="π Processing Status", interactive=False)
output = gr.JSON(label="π Clean JSON Results", show_label=True)
with gr.Tab("π API Usage Instructions"):
gr.Markdown("""
## Updated API Instructions
### Method 1: Python Client (Recommended)
```
pip install gradio_client
```
```
from gradio_client import Client, handle_file
import json
# Connect to your deployed Space
client = Client("crimsons-uv/miniCPM")
# Extract medical data from eFax PDF
def extract_efax_clean(pdf_path, custom_prompt=""):
result = client.predict(
pdf_file=handle_file(pdf_path),
custom_prompt=custom_prompt,
api_name="/process_with_status"
)
# result is tuple: [status_message, clean_json_data]
status, clean_data = result
print(f"Status: {status}")
# Process only pages with data
for page_key, page_data in clean_data.items():
if page_key.startswith('page_'):
print(f"\\n{page_key.upper()}:")
if 'extracted_data' in page_
data = page_data['extracted_data']
if 'patient_first_name' in
print(f" Patient: {data['patient_first_name']} {data.get('patient_last_name', '')}")
if 'primary_insurance' in
print(f" Insurance: {data['primary_insurance'].get('payer_name', '')}")
if 'reason_for_referral' in
print(f" Reason: {data['reason_for_referral']}")
return clean_data
# Usage
results = extract_efax_clean("path/to/your/efax.pdf")
```
### Method 2: cURL Commands
```
# Step 1: Make POST request
curl -X POST https://crimsons-uv-minicpm.hf.space/gradio_api/call/process_with_status \\
-H "Content-Type: application/json" \\
-d '{
"data": [
{"path": "your_efax.pdf", "meta": {"_type": "gradio.FileData"}},
""
]
}' \\
| awk -F'"' '{ print $4}' \\
| read EVENT_ID; curl -N https://crimsons-uv-minicpm.hf.space/gradio_api/call/process_with_status/$EVENT_ID
```
### Method 3: Direct HTTP API
```
import requests
import base64
import json
def call_clean_extraction_api(pdf_path, custom_prompt=""):
# Read and encode PDF
with open(pdf_path, 'rb') as f:
pdf_b64 = base64.b64encode(f.read()).decode()
# API payload
payload = {
"data": [
{"name": "efax.pdf", "data": f"application/pdf;base64,{pdf_b64}"},
custom_prompt
]
}
# Make request
response = requests.post(
"https://crimsons-uv-minicpm.hf.space/gradio_api/call/process_with_status",
json=payload,
headers={"Content-Type": "application/json"}
)
return response.json()
# Usage
clean_results = call_clean_extraction_api("your_efax.pdf")
```
""")
with gr.Tab("π Response Format"):
gr.Markdown("""
## Clean Response Structure
### Input: 5-page PDF with mixed content
### Output: Only pages with data
```
{
"page_2": {
"page_analysis": {
"page_type": "patient_demographics",
"overall_page_confidence": 0.95,
"all_visible_text": "Patient: John Doe..."
},
"extracted_data": {
"patient_first_name": "John",
"patient_last_name": "Doe",
"patient_dob": "01/15/1980",
"patient_gender": "Male",
"patient_primary_phone_number": "555-123-4567",
"patient_address": "123 Main St, City, State 12345",
"patient_zip_code": "12345"
},
"confidence_scores": {
"patient_first_name": 1.0,
"patient_last_name": 1.0,
"patient_dob": 0.95,
"patient_gender": 1.0
},
"fields_found_on_this_page": ["patient_first_name", "patient_last_name", "patient_dob"]
},
"page_3": {
"extracted_data": {
"primary_insurance": {
"payer_name": "Blue Cross Blue Shield",
"member_id": "ABC123456789",
"group_id": "GRP001"
},
"reason_for_referral": "Cardiology consultation"
},
"confidence_scores": {
"primary_insurance": {
"payer_name": 1.0,
"member_id": 0.98,
"group_id": 0.95
},
"reason_for_referral": 1.0
}
}
}
```
### Benefits for AI Combination:
- β
**No empty pages**: Pages 1, 4, 5 had no data, so not included
- β
**No empty fields**: Only fields with actual values
- β
**Smaller payload**: Reduced data size for faster processing
- β
**Easy merging**: Clear structure for combining with ChatGPT/Claude
""")
def process_with_status(pdf_file, custom_prompt):
if pdf_file is None:
return "β No PDF uploaded", {"error": "Upload a PDF file"}
yield "π Converting PDF to images...", {}
try:
result = extract_pages_clean_json(pdf_file, custom_prompt if custom_prompt.strip() else None)
if "error" not in result:
page_count = len([k for k in result.keys() if k.startswith("page_")])
yield f"β
Extracted clean data from {page_count} pages with content", result
else:
yield f"β Error: {result['error']}", result
except Exception as e:
yield f"β Failed: {str(e)}", {"error": str(e)}
extract_btn.click(
fn=process_with_status,
inputs=[pdf_input, prompt_input],
outputs=[status_output, output],
queue=True
)
return demo
if __name__ == "__main__":
demo = create_gradio_interface()
demo.queue(
default_concurrency_limit=1,
max_size=10
).launch(
server_name="0.0.0.0",
server_port=7860,
show_error=True
)
|