File size: 13,738 Bytes
9392036
 
ed8f744
913507e
d966a8e
ed8f744
6ee3759
5498932
 
af68571
1280fd8
9392036
1280fd8
9392036
2ee3fae
9392036
 
 
 
1280fd8
 
913507e
574aa10
6ee3759
574aa10
6ee3759
 
 
574aa10
6ee3759
f872421
 
89ffe36
 
 
 
 
 
 
4940e34
89ffe36
 
 
ed8f744
f872421
89ffe36
f872421
ed8f744
f872421
 
 
 
 
ed8f744
f872421
6ee3759
ed8f744
6ee3759
 
 
 
 
ed8f744
 
 
 
6ee3759
 
 
ed8f744
 
 
6ee3759
d966a8e
ed8f744
 
 
 
f872421
 
 
ed8f744
f872421
d966a8e
ed8f744
 
 
d966a8e
ed8f744
f872421
 
6ee3759
 
ed8f744
 
 
 
 
f872421
 
d966a8e
ed8f744
 
 
 
f872421
 
ed8f744
f872421
ed8f744
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f872421
89ffe36
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ed8f744
 
 
 
89ffe36
 
 
 
 
 
 
 
f872421
 
89ffe36
f872421
ed8f744
89ffe36
ed8f744
 
 
89ffe36
 
 
d966a8e
ed8f744
 
 
 
 
 
89ffe36
ed8f744
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5498932
d966a8e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
af68571
 
 
 
 
 
 
 
 
 
 
 
d966a8e
 
89ffe36
 
af68571
89ffe36
 
 
 
 
 
 
 
 
 
 
 
6ee3759
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
import streamlit as st
import pandas as pd
import numpy as np
from bokeh.plotting import figure
from bokeh.models import ColumnDataSource, DataTable, TableColumn, CustomJS, Select, Button
from bokeh.layouts import row, column
from bokeh.palettes import Reds9, Blues9
from sklearn.decomposition import PCA
from sklearn.manifold import TSNE
import io

TOOLTIPS = """
<div>
    <div>
        <img src="@img{safe}" style="width:128px; height:auto; float: left; margin: 0px 15px 15px 0px;" alt="@img" border="2"></img>
    </div>
    <div>
        <span style="font-size: 17px; font-weight: bold;">@label</span>
    </div>
</div>
"""

def config_style():
    st.markdown("""
        <style>
        .main-title { font-size: 50px; color: #4CAF50; text-align: center; }
        .sub-title { font-size: 30px; color: #555; }
        .custom-text { font-size: 18px; line-height: 1.5; }
        </style>
    """, unsafe_allow_html=True)
    st.markdown('<h1 class="main-title">Merit Embeddings 馃帓馃搩馃弳</h1>', unsafe_allow_html=True)

# Modificamos load_embeddings para aceptar el modelo a cargar
def load_embeddings(model):
    if model == "Donut":
        df_real = pd.read_csv("data/donut_de_Rodrigo_merit_secret_all_embeddings.csv")
        df_es_digital_seq = pd.read_csv("data/donut_de_Rodrigo_merit_es-digital-seq_embeddings.csv")
    elif model == "Idefics2":
        df_real = pd.read_csv("data/idefics2_de_Rodrigo_merit_secret_britanico_embeddings.csv")
        df_es_digital_seq = pd.read_csv("data/idefics2_de_Rodrigo_merit_es-digital-seq_embeddings.csv")
    else:
        st.error("Modelo no reconocido")
        return None
    return {"real": df_real, "es-digital-seq": df_es_digital_seq}

# Funciones auxiliares (id茅nticas a las de tu c贸digo)
def reducer_selector(df_combined, embedding_cols):
    reduction_method = st.selectbox("Select Dimensionality Reduction Method:", options=["PCA", "t-SNE"])
    all_embeddings = df_combined[embedding_cols].values
    if reduction_method == "PCA":
        reducer = PCA(n_components=2)
    else:
        reducer = TSNE(n_components=2, random_state=42, perplexity=30, learning_rate=200)
    return reducer.fit_transform(all_embeddings)

def add_dataset_to_fig(fig, df, selected_labels, marker, color_mapping):
    renderers = {}
    for label in selected_labels:
        subset = df[df['label'] == label]
        if subset.empty:
            continue
        source = ColumnDataSource(data=dict(
            x=subset['x'],
            y=subset['y'],
            label=subset['label'],
            img=subset['img']
        ))
        color = color_mapping[label]
        if marker == "circle":
            r = fig.circle('x', 'y', size=10, source=source,
                           fill_color=color, line_color=color,
                           legend_label=f"{label} (Real)")
        elif marker == "square":
            r = fig.square('x', 'y', size=6, source=source,
                           fill_color=color, line_color=color,
                           legend_label=f"{label} (Synthetic)")
        renderers[label] = r
    return renderers

def get_color_maps(selected_subsets: dict):
    num_real = len(selected_subsets["real"])
    red_palette = Reds9[:num_real] if num_real <= 9 else (Reds9 * ((num_real // 9) + 1))[:num_real]
    color_mapping_real = {label: red_palette[i] for i, label in enumerate(sorted(selected_subsets["real"]))}
    
    num_es = len(selected_subsets["es-digital-seq"])
    blue_palette = Blues9[:num_es] if num_es <= 9 else (Blues9 * ((num_es // 9) + 1))[:num_es]
    color_mapping_es = {label: blue_palette[i] for i, label in enumerate(sorted(selected_subsets["es-digital-seq"]))}
    
    return {"real": color_mapping_real, "es-digital-seq": color_mapping_es}

def split_versions(df_combined, reduced):
    df_combined['x'] = reduced[:, 0]
    df_combined['y'] = reduced[:, 1]
    df_real = df_combined[df_combined["version"] == "real"].copy()
    df_es = df_combined[df_combined["version"] == "es_digital_seq"].copy()
    unique_real = sorted(df_real['label'].unique().tolist())
    unique_es = sorted(df_es['label'].unique().tolist())
    return {"real": df_real, "es-digital-seq": df_es}, {"real": unique_real, "es-digital-seq": unique_es}

def create_figure(dfs_reduced, selected_subsets: dict, color_maps: dict):
    fig = figure(width=400, height=400, tooltips=TOOLTIPS, title="")
    real_renderers = add_dataset_to_fig(fig, dfs_reduced["real"], selected_subsets["real"],
                                        marker="circle", color_mapping=color_maps["real"])
    synthetic_renderers = add_dataset_to_fig(fig, dfs_reduced["es-digital-seq"], selected_subsets["es-digital-seq"],
                                             marker="square", color_mapping=color_maps["es-digital-seq"])
    fig.legend.location = "top_right"
    fig.legend.click_policy = "hide"
    return fig, real_renderers, synthetic_renderers

def calculate_cluster_centers(df: pd.DataFrame, selected_labels: list) -> dict:
    centers = {}
    for label in selected_labels:
        subset = df[df['label'] == label]
        if not subset.empty:
            centers[label] = (subset['x'].mean(), subset['y'].mean())
    return centers

def compute_distances(centers_es: dict, centers_real: dict) -> pd.DataFrame:
    distances = {}
    for es_label, (x_es, y_es) in centers_es.items():
        distances[es_label] = {}
        for real_label, (x_real, y_real) in centers_real.items():
            distances[es_label][real_label] = np.sqrt((x_es - x_real)**2 + (y_es - y_real)**2)
    return pd.DataFrame(distances).T

def create_table(df_distances):
    df_table = df_distances.copy()
    df_table.reset_index(inplace=True)
    df_table.rename(columns={'index': 'Synthetic'}, inplace=True)
    source_table = ColumnDataSource(df_table)
    columns = [TableColumn(field='Synthetic', title='Synthetic')]
    for col in df_table.columns:
        if col != 'Synthetic':
            columns.append(TableColumn(field=col, title=col))
    row_height = 28
    header_height = 30
    total_height = header_height + len(df_table) * row_height

    data_table = DataTable(source=source_table, columns=columns, sizing_mode='stretch_width', height=total_height)
    return data_table, df_table, source_table

# Funci贸n que ejecuta todo el proceso para un modelo determinado
def run_model(model_name):
    embeddings = load_embeddings(model_name)
    if embeddings is None:
        return

    # Asignamos la versi贸n para distinguir en el split
    embeddings["real"]["version"] = "real"
    embeddings["es-digital-seq"]["version"] = "es_digital_seq"
    embedding_cols = [col for col in embeddings["real"].columns if col.startswith("dim_")]
    df_combined = pd.concat([embeddings["real"], embeddings["es-digital-seq"]], ignore_index=True)
    
    st.markdown('<h6 class="sub-title">Select Dimensionality Reduction Method</h6>', unsafe_allow_html=True)
    reduction_method = st.selectbox("", options=["t-SNE", "PCA"], key=model_name)
    if reduction_method == "PCA":
        reducer = PCA(n_components=2)
    else:
        reducer = TSNE(n_components=2, random_state=42, perplexity=30, learning_rate=200)
    reduced = reducer.fit_transform(df_combined[embedding_cols].values)
    
    dfs_reduced, unique_subsets = split_versions(df_combined, reduced)
    selected_subsets = {"real": unique_subsets["real"], "es-digital-seq": unique_subsets["es-digital-seq"]}
    color_maps = get_color_maps(selected_subsets)
    
    fig, real_renderers, synthetic_renderers = create_figure(dfs_reduced, selected_subsets, color_maps)
    centers_real = calculate_cluster_centers(dfs_reduced["real"], selected_subsets["real"])
    centers_es = calculate_cluster_centers(dfs_reduced["es-digital-seq"], selected_subsets["es-digital-seq"])
    df_distances = compute_distances(centers_es, centers_real)
    data_table, df_table, source_table = create_table(df_distances)
    real_subset_names = list(df_table.columns[1:])
    real_select = Select(title="", value=real_subset_names[0], options=real_subset_names)
    reset_button = Button(label="Reset Colors", button_type="primary")
    line_source = ColumnDataSource(data={'x': [], 'y': []})
    fig.line('x', 'y', source=line_source, line_width=2, line_color='black')
    
    synthetic_centers_js = {k: [v[0], v[1]] for k, v in centers_es.items()}
    real_centers_js = {k: [v[0], v[1]] for k, v in centers_real.items()}
    
    # Callback para actualizar el gr谩fico
    callback = CustomJS(args=dict(source=source_table, line_source=line_source,
                                  synthetic_centers=synthetic_centers_js,
                                  real_centers=real_centers_js,
                                  synthetic_renderers=synthetic_renderers,
                                  real_renderers=real_renderers,
                                  synthetic_colors=color_maps["es-digital-seq"],
                                  real_colors=color_maps["real"],
                                  real_select=real_select),
    code="""
        var selected = source.selected.indices;
        if (selected.length > 0) {
            var row = selected[0];
            var data = source.data;
            var synthetic_label = data['Synthetic'][row];
            var real_label = real_select.value;
            var syn_coords = synthetic_centers[synthetic_label];
            var real_coords = real_centers[real_label];
            line_source.data = { 'x': [syn_coords[0], real_coords[0]], 'y': [syn_coords[1], real_coords[1]] };
            line_source.change.emit();
            
            for (var key in synthetic_renderers) {
                if (synthetic_renderers.hasOwnProperty(key)) {
                    var renderer = synthetic_renderers[key];
                    if (key === synthetic_label) {
                        renderer.glyph.fill_color = synthetic_colors[key];
                        renderer.glyph.line_color = synthetic_colors[key];
                    } else {
                        renderer.glyph.fill_color = "lightgray";
                        renderer.glyph.line_color = "lightgray";
                    }
                }
            }
            for (var key in real_renderers) {
                if (real_renderers.hasOwnProperty(key)) {
                    var renderer = real_renderers[key];
                    if (key === real_label) {
                        renderer.glyph.fill_color = real_colors[key];
                        renderer.glyph.line_color = real_colors[key];
                    } else {
                        renderer.glyph.fill_color = "lightgray";
                        renderer.glyph.line_color = "lightgray";
                    }
                }
            }
        } else {
            line_source.data = { 'x': [], 'y': [] };
            line_source.change.emit();
            for (var key in synthetic_renderers) {
                if (synthetic_renderers.hasOwnProperty(key)) {
                    var renderer = synthetic_renderers[key];
                    renderer.glyph.fill_color = synthetic_colors[key];
                    renderer.glyph.line_color = synthetic_colors[key];
                }
            }
            for (var key in real_renderers) {
                if (real_renderers.hasOwnProperty(key)) {
                    var renderer = real_renderers[key];
                    renderer.glyph.fill_color = real_colors[key];
                    renderer.glyph.line_color = real_colors[key];
                }
            }
        }
    """)
    source_table.selected.js_on_change('indices', callback)
    real_select.js_on_change('value', callback)
    
    reset_callback = CustomJS(args=dict(line_source=line_source,
                                        synthetic_renderers=synthetic_renderers,
                                        real_renderers=real_renderers,
                                        synthetic_colors=color_maps["es-digital-seq"],
                                        real_colors=color_maps["real"]),
    code="""
        line_source.data = { 'x': [], 'y': [] };
        line_source.change.emit();
        for (var key in synthetic_renderers) {
            if (synthetic_renderers.hasOwnProperty(key)) {
                var renderer = synthetic_renderers[key];
                renderer.glyph.fill_color = synthetic_colors[key];
                renderer.glyph.line_color = synthetic_colors[key];
            }
        }
        for (var key in real_renderers) {
            if (real_renderers.hasOwnProperty(key)) {
                var renderer = real_renderers[key];
                renderer.glyph.fill_color = real_colors[key];
                renderer.glyph.line_color = real_colors[key];
            }
        }
    """)
    reset_button.js_on_event("button_click", reset_callback)

    buffer = io.BytesIO()
    df_table.to_excel(buffer, index=False)
    buffer.seek(0)

    # Agregar un bot贸n de descarga en Streamlit
    st.download_button(
        label="Exportar tabla a Excel",
        data=buffer,
        file_name="tabla.xlsx",
        mime="application/vnd.openxmlformats-officedocument.spreadsheetml.sheet"
    )
    
    layout = column(fig, column(real_select, reset_button, data_table))
    st.bokeh_chart(layout, use_container_width=True)


# Funci贸n principal con tabs para cambiar de modelo
def main():
    config_style()
    tabs = st.tabs(["Donut", "Idefics2"])
    
    with tabs[0]:
        st.markdown('<h2 class="sub-title">Modelo Donut 馃</h2>', unsafe_allow_html=True)
        run_model("Donut")
    
    with tabs[1]:
        st.markdown('<h2 class="sub-title">Modelo Idefics2 馃</h2>', unsafe_allow_html=True)
        run_model("Idefics2")

if __name__ == "__main__":
    main()