Spaces:
Running
Running
File size: 13,738 Bytes
9392036 ed8f744 913507e d966a8e ed8f744 6ee3759 5498932 af68571 1280fd8 9392036 1280fd8 9392036 2ee3fae 9392036 1280fd8 913507e 574aa10 6ee3759 574aa10 6ee3759 574aa10 6ee3759 f872421 89ffe36 4940e34 89ffe36 ed8f744 f872421 89ffe36 f872421 ed8f744 f872421 ed8f744 f872421 6ee3759 ed8f744 6ee3759 ed8f744 6ee3759 ed8f744 6ee3759 d966a8e ed8f744 f872421 ed8f744 f872421 d966a8e ed8f744 d966a8e ed8f744 f872421 6ee3759 ed8f744 f872421 d966a8e ed8f744 f872421 ed8f744 f872421 ed8f744 f872421 89ffe36 ed8f744 89ffe36 f872421 89ffe36 f872421 ed8f744 89ffe36 ed8f744 89ffe36 d966a8e ed8f744 89ffe36 ed8f744 5498932 d966a8e af68571 d966a8e 89ffe36 af68571 89ffe36 6ee3759 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 |
import streamlit as st
import pandas as pd
import numpy as np
from bokeh.plotting import figure
from bokeh.models import ColumnDataSource, DataTable, TableColumn, CustomJS, Select, Button
from bokeh.layouts import row, column
from bokeh.palettes import Reds9, Blues9
from sklearn.decomposition import PCA
from sklearn.manifold import TSNE
import io
TOOLTIPS = """
<div>
<div>
<img src="@img{safe}" style="width:128px; height:auto; float: left; margin: 0px 15px 15px 0px;" alt="@img" border="2"></img>
</div>
<div>
<span style="font-size: 17px; font-weight: bold;">@label</span>
</div>
</div>
"""
def config_style():
st.markdown("""
<style>
.main-title { font-size: 50px; color: #4CAF50; text-align: center; }
.sub-title { font-size: 30px; color: #555; }
.custom-text { font-size: 18px; line-height: 1.5; }
</style>
""", unsafe_allow_html=True)
st.markdown('<h1 class="main-title">Merit Embeddings 馃帓馃搩馃弳</h1>', unsafe_allow_html=True)
# Modificamos load_embeddings para aceptar el modelo a cargar
def load_embeddings(model):
if model == "Donut":
df_real = pd.read_csv("data/donut_de_Rodrigo_merit_secret_all_embeddings.csv")
df_es_digital_seq = pd.read_csv("data/donut_de_Rodrigo_merit_es-digital-seq_embeddings.csv")
elif model == "Idefics2":
df_real = pd.read_csv("data/idefics2_de_Rodrigo_merit_secret_britanico_embeddings.csv")
df_es_digital_seq = pd.read_csv("data/idefics2_de_Rodrigo_merit_es-digital-seq_embeddings.csv")
else:
st.error("Modelo no reconocido")
return None
return {"real": df_real, "es-digital-seq": df_es_digital_seq}
# Funciones auxiliares (id茅nticas a las de tu c贸digo)
def reducer_selector(df_combined, embedding_cols):
reduction_method = st.selectbox("Select Dimensionality Reduction Method:", options=["PCA", "t-SNE"])
all_embeddings = df_combined[embedding_cols].values
if reduction_method == "PCA":
reducer = PCA(n_components=2)
else:
reducer = TSNE(n_components=2, random_state=42, perplexity=30, learning_rate=200)
return reducer.fit_transform(all_embeddings)
def add_dataset_to_fig(fig, df, selected_labels, marker, color_mapping):
renderers = {}
for label in selected_labels:
subset = df[df['label'] == label]
if subset.empty:
continue
source = ColumnDataSource(data=dict(
x=subset['x'],
y=subset['y'],
label=subset['label'],
img=subset['img']
))
color = color_mapping[label]
if marker == "circle":
r = fig.circle('x', 'y', size=10, source=source,
fill_color=color, line_color=color,
legend_label=f"{label} (Real)")
elif marker == "square":
r = fig.square('x', 'y', size=6, source=source,
fill_color=color, line_color=color,
legend_label=f"{label} (Synthetic)")
renderers[label] = r
return renderers
def get_color_maps(selected_subsets: dict):
num_real = len(selected_subsets["real"])
red_palette = Reds9[:num_real] if num_real <= 9 else (Reds9 * ((num_real // 9) + 1))[:num_real]
color_mapping_real = {label: red_palette[i] for i, label in enumerate(sorted(selected_subsets["real"]))}
num_es = len(selected_subsets["es-digital-seq"])
blue_palette = Blues9[:num_es] if num_es <= 9 else (Blues9 * ((num_es // 9) + 1))[:num_es]
color_mapping_es = {label: blue_palette[i] for i, label in enumerate(sorted(selected_subsets["es-digital-seq"]))}
return {"real": color_mapping_real, "es-digital-seq": color_mapping_es}
def split_versions(df_combined, reduced):
df_combined['x'] = reduced[:, 0]
df_combined['y'] = reduced[:, 1]
df_real = df_combined[df_combined["version"] == "real"].copy()
df_es = df_combined[df_combined["version"] == "es_digital_seq"].copy()
unique_real = sorted(df_real['label'].unique().tolist())
unique_es = sorted(df_es['label'].unique().tolist())
return {"real": df_real, "es-digital-seq": df_es}, {"real": unique_real, "es-digital-seq": unique_es}
def create_figure(dfs_reduced, selected_subsets: dict, color_maps: dict):
fig = figure(width=400, height=400, tooltips=TOOLTIPS, title="")
real_renderers = add_dataset_to_fig(fig, dfs_reduced["real"], selected_subsets["real"],
marker="circle", color_mapping=color_maps["real"])
synthetic_renderers = add_dataset_to_fig(fig, dfs_reduced["es-digital-seq"], selected_subsets["es-digital-seq"],
marker="square", color_mapping=color_maps["es-digital-seq"])
fig.legend.location = "top_right"
fig.legend.click_policy = "hide"
return fig, real_renderers, synthetic_renderers
def calculate_cluster_centers(df: pd.DataFrame, selected_labels: list) -> dict:
centers = {}
for label in selected_labels:
subset = df[df['label'] == label]
if not subset.empty:
centers[label] = (subset['x'].mean(), subset['y'].mean())
return centers
def compute_distances(centers_es: dict, centers_real: dict) -> pd.DataFrame:
distances = {}
for es_label, (x_es, y_es) in centers_es.items():
distances[es_label] = {}
for real_label, (x_real, y_real) in centers_real.items():
distances[es_label][real_label] = np.sqrt((x_es - x_real)**2 + (y_es - y_real)**2)
return pd.DataFrame(distances).T
def create_table(df_distances):
df_table = df_distances.copy()
df_table.reset_index(inplace=True)
df_table.rename(columns={'index': 'Synthetic'}, inplace=True)
source_table = ColumnDataSource(df_table)
columns = [TableColumn(field='Synthetic', title='Synthetic')]
for col in df_table.columns:
if col != 'Synthetic':
columns.append(TableColumn(field=col, title=col))
row_height = 28
header_height = 30
total_height = header_height + len(df_table) * row_height
data_table = DataTable(source=source_table, columns=columns, sizing_mode='stretch_width', height=total_height)
return data_table, df_table, source_table
# Funci贸n que ejecuta todo el proceso para un modelo determinado
def run_model(model_name):
embeddings = load_embeddings(model_name)
if embeddings is None:
return
# Asignamos la versi贸n para distinguir en el split
embeddings["real"]["version"] = "real"
embeddings["es-digital-seq"]["version"] = "es_digital_seq"
embedding_cols = [col for col in embeddings["real"].columns if col.startswith("dim_")]
df_combined = pd.concat([embeddings["real"], embeddings["es-digital-seq"]], ignore_index=True)
st.markdown('<h6 class="sub-title">Select Dimensionality Reduction Method</h6>', unsafe_allow_html=True)
reduction_method = st.selectbox("", options=["t-SNE", "PCA"], key=model_name)
if reduction_method == "PCA":
reducer = PCA(n_components=2)
else:
reducer = TSNE(n_components=2, random_state=42, perplexity=30, learning_rate=200)
reduced = reducer.fit_transform(df_combined[embedding_cols].values)
dfs_reduced, unique_subsets = split_versions(df_combined, reduced)
selected_subsets = {"real": unique_subsets["real"], "es-digital-seq": unique_subsets["es-digital-seq"]}
color_maps = get_color_maps(selected_subsets)
fig, real_renderers, synthetic_renderers = create_figure(dfs_reduced, selected_subsets, color_maps)
centers_real = calculate_cluster_centers(dfs_reduced["real"], selected_subsets["real"])
centers_es = calculate_cluster_centers(dfs_reduced["es-digital-seq"], selected_subsets["es-digital-seq"])
df_distances = compute_distances(centers_es, centers_real)
data_table, df_table, source_table = create_table(df_distances)
real_subset_names = list(df_table.columns[1:])
real_select = Select(title="", value=real_subset_names[0], options=real_subset_names)
reset_button = Button(label="Reset Colors", button_type="primary")
line_source = ColumnDataSource(data={'x': [], 'y': []})
fig.line('x', 'y', source=line_source, line_width=2, line_color='black')
synthetic_centers_js = {k: [v[0], v[1]] for k, v in centers_es.items()}
real_centers_js = {k: [v[0], v[1]] for k, v in centers_real.items()}
# Callback para actualizar el gr谩fico
callback = CustomJS(args=dict(source=source_table, line_source=line_source,
synthetic_centers=synthetic_centers_js,
real_centers=real_centers_js,
synthetic_renderers=synthetic_renderers,
real_renderers=real_renderers,
synthetic_colors=color_maps["es-digital-seq"],
real_colors=color_maps["real"],
real_select=real_select),
code="""
var selected = source.selected.indices;
if (selected.length > 0) {
var row = selected[0];
var data = source.data;
var synthetic_label = data['Synthetic'][row];
var real_label = real_select.value;
var syn_coords = synthetic_centers[synthetic_label];
var real_coords = real_centers[real_label];
line_source.data = { 'x': [syn_coords[0], real_coords[0]], 'y': [syn_coords[1], real_coords[1]] };
line_source.change.emit();
for (var key in synthetic_renderers) {
if (synthetic_renderers.hasOwnProperty(key)) {
var renderer = synthetic_renderers[key];
if (key === synthetic_label) {
renderer.glyph.fill_color = synthetic_colors[key];
renderer.glyph.line_color = synthetic_colors[key];
} else {
renderer.glyph.fill_color = "lightgray";
renderer.glyph.line_color = "lightgray";
}
}
}
for (var key in real_renderers) {
if (real_renderers.hasOwnProperty(key)) {
var renderer = real_renderers[key];
if (key === real_label) {
renderer.glyph.fill_color = real_colors[key];
renderer.glyph.line_color = real_colors[key];
} else {
renderer.glyph.fill_color = "lightgray";
renderer.glyph.line_color = "lightgray";
}
}
}
} else {
line_source.data = { 'x': [], 'y': [] };
line_source.change.emit();
for (var key in synthetic_renderers) {
if (synthetic_renderers.hasOwnProperty(key)) {
var renderer = synthetic_renderers[key];
renderer.glyph.fill_color = synthetic_colors[key];
renderer.glyph.line_color = synthetic_colors[key];
}
}
for (var key in real_renderers) {
if (real_renderers.hasOwnProperty(key)) {
var renderer = real_renderers[key];
renderer.glyph.fill_color = real_colors[key];
renderer.glyph.line_color = real_colors[key];
}
}
}
""")
source_table.selected.js_on_change('indices', callback)
real_select.js_on_change('value', callback)
reset_callback = CustomJS(args=dict(line_source=line_source,
synthetic_renderers=synthetic_renderers,
real_renderers=real_renderers,
synthetic_colors=color_maps["es-digital-seq"],
real_colors=color_maps["real"]),
code="""
line_source.data = { 'x': [], 'y': [] };
line_source.change.emit();
for (var key in synthetic_renderers) {
if (synthetic_renderers.hasOwnProperty(key)) {
var renderer = synthetic_renderers[key];
renderer.glyph.fill_color = synthetic_colors[key];
renderer.glyph.line_color = synthetic_colors[key];
}
}
for (var key in real_renderers) {
if (real_renderers.hasOwnProperty(key)) {
var renderer = real_renderers[key];
renderer.glyph.fill_color = real_colors[key];
renderer.glyph.line_color = real_colors[key];
}
}
""")
reset_button.js_on_event("button_click", reset_callback)
buffer = io.BytesIO()
df_table.to_excel(buffer, index=False)
buffer.seek(0)
# Agregar un bot贸n de descarga en Streamlit
st.download_button(
label="Exportar tabla a Excel",
data=buffer,
file_name="tabla.xlsx",
mime="application/vnd.openxmlformats-officedocument.spreadsheetml.sheet"
)
layout = column(fig, column(real_select, reset_button, data_table))
st.bokeh_chart(layout, use_container_width=True)
# Funci贸n principal con tabs para cambiar de modelo
def main():
config_style()
tabs = st.tabs(["Donut", "Idefics2"])
with tabs[0]:
st.markdown('<h2 class="sub-title">Modelo Donut 馃</h2>', unsafe_allow_html=True)
run_model("Donut")
with tabs[1]:
st.markdown('<h2 class="sub-title">Modelo Idefics2 馃</h2>', unsafe_allow_html=True)
run_model("Idefics2")
if __name__ == "__main__":
main()
|