File size: 8,040 Bytes
ac9f500
 
751c399
 
 
ac9f500
751c399
ac9f500
d318540
c539386
cf2ad62
0cdf25a
cf2ad62
ac9f500
 
cc71d5c
 
 
 
c544fc1
cc71d5c
c544fc1
751c399
d318540
b050424
d318540
 
 
 
 
 
 
 
 
 
 
 
 
 
de50b3c
751c399
d318540
b050424
 
0ac5b89
b050424
 
0ac5b89
456a39c
0e25922
0ac5b89
c539386
5a322a1
93d636a
b050424
 
4ca7330
 
b050424
4ca7330
 
b050424
0cdf25a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d5a22d5
0cdf25a
 
 
 
ac9f500
 
b050424
c539386
ac9f500
 
 
751c399
b050424
ac9f500
69c8cf6
ac9f500
cc71d5c
 
0cdf25a
cc71d5c
 
0cdf25a
cc71d5c
 
 
3c9ef9c
 
cc71d5c
 
 
3c9ef9c
 
 
 
 
 
 
 
751c399
cc71d5c
0cdf25a
73c8c5a
0cdf25a
 
 
387a1a9
0cdf25a
751c399
73e939c
c539386
 
 
cc71d5c
0cdf25a
 
 
 
d5a22d5
b467cf2
 
 
 
 
 
 
 
b7b8021
0cdf25a
b467cf2
0cdf25a
b7b8021
 
0cdf25a
 
 
b7b8021
 
 
 
 
 
 
cc71d5c
 
 
 
 
0cdf25a
cc71d5c
 
b7b8021
 
cc71d5c
 
 
c539386
 
 
0cdf25a
b7b8021
3c9ef9c
cc71d5c
 
 
 
0cdf25a
cc71d5c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0cdf25a
cc71d5c
 
0cdf25a
cc71d5c
 
 
 
 
 
0cdf25a
3c9ef9c
 
 
 
 
 
 
 
 
0cdf25a
cc71d5c
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
from flask import Flask, request, jsonify, send_file
from PIL import Image
import torch
import torch.nn.functional as F
from torchvision import transforms
import os
import numpy as np
from datetime import datetime
import sqlite3
import torch.nn as nn
import torchvision.models as models
import cv2

app = Flask(__name__)

# βœ… Directory and database path
OUTPUT_DIR = '/tmp/results'
if not os.path.exists(OUTPUT_DIR):
    os.makedirs(OUTPUT_DIR)

DB_PATH = os.path.join(OUTPUT_DIR, 'results.db')


def init_db():
    """Initialize SQLite database for storing results."""
    conn = sqlite3.connect(DB_PATH)
    cursor = conn.cursor()
    cursor.execute("""
        CREATE TABLE IF NOT EXISTS results (
            id INTEGER PRIMARY KEY AUTOINCREMENT,
            image_filename TEXT,
            prediction TEXT,
            confidence REAL,
            gradcam_filename TEXT,
            timestamp TEXT
        )
    """)
    conn.commit()
    conn.close()


init_db()

# βœ… Import your custom GLAM model
from densenet_withglam import get_model_with_attention 

# βœ… Instantiate the model
model = get_model_with_attention('densenet169', num_classes=3)  # Will have GLAM
model.load_state_dict(torch.load('densenet169_seed40_best.pt', map_location='cpu'))
model.eval()

# βœ… Class Names
CLASS_NAMES = ["Advanced", "Early", "Normal"]

# βœ… Transformation for input images
transform = transforms.Compose([
    transforms.Resize(256),
    transforms.CenterCrop(224),
    transforms.ToTensor(),
    transforms.Normalize(mean=[0.485, 0.456, 0.406], 
                         std=[0.229, 0.224, 0.225]),
])

# =========================
# GRAD-CAM IMPLEMENTATION
# =========================
class GradCAM:
    """Grad-CAM for the target layer."""
    def __init__(self, model, target_layer_name):
        self.model = model
        self.target_layer_name = target_layer_name
        self.activations = None
        self.gradients = None
        self._register_hooks()

    def _register_hooks(self):
        """Register forward and backward hooks."""
        for name, module in self.model.named_modules():
            if name == self.target_layer_name:
                module.register_forward_hook(self._forward_hook)
                module.register_full_backward_hook(self._backward_hook)

    def _forward_hook(self, module, input, output):
        """Save activations."""
        self.activations = output

    def _backward_hook(self, module, grad_in, grad_out):
        """Save gradients."""
        self.gradients = grad_out[0]

    def generate(self, class_index):
        """Generate the Grad-CAM."""
        if self.activations is None or self.gradients is None:
            raise ValueError("Must run forward and backward passes first.")
        weights = self.gradients.mean(dim=(2, 3), keepdim=True)
        cam = (weights * self.activations).sum(dim=1, keepdim=True)
        cam = F.relu(cam)
        cam = cam.squeeze().cpu().detach().numpy()
        cam = (cam - cam.min()) / (cam.max() - cam.min() + 1e-8)
        return cam


@app.route('/')
def home():
    """Check that the API is working."""
    return "Glaucoma Detection Flask API (3-Class Model) is running!"

@app.route("/test_file")
def test_file():
    """Check if the .pt model file is present and readable."""
    filepath = "densenet169_seed40_best2.pt"
    if os.path.exists(filepath):
        return f"βœ… Model file found at: {filepath}"
    else:
        return "❌ Model file NOT found."


@app.route('/predict', methods=['POST'])
def predict():
    """Perform prediction and save results (including Grad-CAM) to the database."""
    if 'file' not in request.files:
        return jsonify({'error': 'No file uploaded'}), 400

    uploaded_file = request.files['file']
    if uploaded_file.filename == '':
        return jsonify({'error': 'No file selected'}), 400

    try:
        # βœ… Save the uploaded image
        timestamp = int(datetime.now().timestamp())
        uploaded_filename = f"uploaded_{timestamp}.png"
        uploaded_file_path = os.path.join(OUTPUT_DIR, uploaded_filename)
        uploaded_file.save(uploaded_file_path)

        # βœ… Perform prediction
        img = Image.open(uploaded_file_path).convert('RGB')
        input_tensor = transform(img).unsqueeze(0)

        # Grad-CAM setup
        target_layer_name = "features.2.local_spatial_conv3"
        gradcam = GradCAM(model, target_layer_name)

        # Forward pass
        
        output = model(input_tensor)

        probabilities = F.softmax(output, dim=1).cpu().detach().numpy()[0]
        class_index = np.argmax(probabilities)
        result = CLASS_NAMES[class_index]
        confidence = float(probabilities[class_index])

        # Backward pass for Grad-CAM
        model.zero_grad()
        output[0, class_index].backward()
        cam = gradcam.generate(class_index)
        
        # βœ… Ensure cam is 2D
        if cam.ndim == 3:
            cam = cam[0]
        
        # βœ… Scale CAM and resize
        cam = np.uint8(255 * cam)
        cam = cv2.resize(cam, (224, 224))
        
        # βœ… Create color overlay
        original_img = np.asarray(img.resize((224, 224)))
        heatmap = cv2.applyColorMap(cam, cv2.COLORMAP_JET)
        overlay = cv2.addWeighted(original_img, 0.6, heatmap, 0.4, 0)
        
        # βœ… Save color overlay
        gradcam_filename = f"gradcam_{timestamp}.png"
        gradcam_file_path = os.path.join(OUTPUT_DIR, gradcam_filename)
        cv2.imwrite(gradcam_file_path, overlay)
        
        # βœ… Save grayscale overlay
        gray_filename = f"gradcam_gray_{timestamp}.png"
        gray_file_path = os.path.join(OUTPUT_DIR, gray_filename)
        cv2.imwrite(gray_file_path, cam)
        
        # βœ… Save results to database
        conn = sqlite3.connect(DB_PATH)
        cursor = conn.cursor()
        cursor.execute("""
            INSERT INTO results (image_filename, prediction, confidence, gradcam_filename, timestamp) 
            VALUES (?, ?, ?, ?, ?)
        """, (uploaded_filename, result, confidence, gradcam_filename, datetime.now().isoformat()))
        conn.commit()
        conn.close()
        
        # βœ… Return results
        return jsonify({
            'prediction': result,
            'confidence': confidence,
            'normal_probability': float(probabilities[0]),
            'early_glaucoma_probability': float(probabilities[1]),
            'advanced_glaucoma_probability': float(probabilities[2]),
            'gradcam_image': gradcam_filename,
            'gradcam_gray_image': gray_filename,
            'image_filename': uploaded_filename
        })
    except Exception as e:
        return jsonify({'error': str(e)}), 500


@app.route('/results', methods=['GET'])
def results():
    """List all results from the SQLite database."""
    conn = sqlite3.connect(DB_PATH)
    cursor = conn.cursor()
    cursor.execute("SELECT * FROM results ORDER BY timestamp DESC")
    results_data = cursor.fetchall()
    conn.close()

    results_list = []
    for record in results_data:
        results_list.append({
            'id': record[0],
            'image_filename': record[1],
            'prediction': record[2],
            'confidence': record[3],
            'gradcam_filename': record[4],
            'timestamp': record[5]
        })

    return jsonify(results_list)


@app.route('/gradcam/<filename>')
def get_gradcam(filename):
    """Serve the Grad-CAM overlay image."""
    filepath = os.path.join(OUTPUT_DIR, filename)
    if os.path.exists(filepath):
        return send_file(filepath, mimetype='image/png')
    else:
        return jsonify({'error': 'File not found'}), 404


@app.route('/image/<filename>')
def get_image(filename):
    """Serve the original uploaded image."""
    filepath = os.path.join(OUTPUT_DIR, filename)
    if os.path.exists(filepath):
        return send_file(filepath, mimetype='image/png')
    else:
        return jsonify({'error': 'File not found'}), 404


if __name__ == '__main__':
    app.run(host='0.0.0.0', port=7860)