Spaces:
Sleeping
Sleeping
File size: 8,040 Bytes
ac9f500 751c399 ac9f500 751c399 ac9f500 d318540 c539386 cf2ad62 0cdf25a cf2ad62 ac9f500 cc71d5c c544fc1 cc71d5c c544fc1 751c399 d318540 b050424 d318540 de50b3c 751c399 d318540 b050424 0ac5b89 b050424 0ac5b89 456a39c 0e25922 0ac5b89 c539386 5a322a1 93d636a b050424 4ca7330 b050424 4ca7330 b050424 0cdf25a d5a22d5 0cdf25a ac9f500 b050424 c539386 ac9f500 751c399 b050424 ac9f500 69c8cf6 ac9f500 cc71d5c 0cdf25a cc71d5c 0cdf25a cc71d5c 3c9ef9c cc71d5c 3c9ef9c 751c399 cc71d5c 0cdf25a 73c8c5a 0cdf25a 387a1a9 0cdf25a 751c399 73e939c c539386 cc71d5c 0cdf25a d5a22d5 b467cf2 b7b8021 0cdf25a b467cf2 0cdf25a b7b8021 0cdf25a b7b8021 cc71d5c 0cdf25a cc71d5c b7b8021 cc71d5c c539386 0cdf25a b7b8021 3c9ef9c cc71d5c 0cdf25a cc71d5c 0cdf25a cc71d5c 0cdf25a cc71d5c 0cdf25a 3c9ef9c 0cdf25a cc71d5c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 |
from flask import Flask, request, jsonify, send_file
from PIL import Image
import torch
import torch.nn.functional as F
from torchvision import transforms
import os
import numpy as np
from datetime import datetime
import sqlite3
import torch.nn as nn
import torchvision.models as models
import cv2
app = Flask(__name__)
# β
Directory and database path
OUTPUT_DIR = '/tmp/results'
if not os.path.exists(OUTPUT_DIR):
os.makedirs(OUTPUT_DIR)
DB_PATH = os.path.join(OUTPUT_DIR, 'results.db')
def init_db():
"""Initialize SQLite database for storing results."""
conn = sqlite3.connect(DB_PATH)
cursor = conn.cursor()
cursor.execute("""
CREATE TABLE IF NOT EXISTS results (
id INTEGER PRIMARY KEY AUTOINCREMENT,
image_filename TEXT,
prediction TEXT,
confidence REAL,
gradcam_filename TEXT,
timestamp TEXT
)
""")
conn.commit()
conn.close()
init_db()
# β
Import your custom GLAM model
from densenet_withglam import get_model_with_attention
# β
Instantiate the model
model = get_model_with_attention('densenet169', num_classes=3) # Will have GLAM
model.load_state_dict(torch.load('densenet169_seed40_best.pt', map_location='cpu'))
model.eval()
# β
Class Names
CLASS_NAMES = ["Advanced", "Early", "Normal"]
# β
Transformation for input images
transform = transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225]),
])
# =========================
# GRAD-CAM IMPLEMENTATION
# =========================
class GradCAM:
"""Grad-CAM for the target layer."""
def __init__(self, model, target_layer_name):
self.model = model
self.target_layer_name = target_layer_name
self.activations = None
self.gradients = None
self._register_hooks()
def _register_hooks(self):
"""Register forward and backward hooks."""
for name, module in self.model.named_modules():
if name == self.target_layer_name:
module.register_forward_hook(self._forward_hook)
module.register_full_backward_hook(self._backward_hook)
def _forward_hook(self, module, input, output):
"""Save activations."""
self.activations = output
def _backward_hook(self, module, grad_in, grad_out):
"""Save gradients."""
self.gradients = grad_out[0]
def generate(self, class_index):
"""Generate the Grad-CAM."""
if self.activations is None or self.gradients is None:
raise ValueError("Must run forward and backward passes first.")
weights = self.gradients.mean(dim=(2, 3), keepdim=True)
cam = (weights * self.activations).sum(dim=1, keepdim=True)
cam = F.relu(cam)
cam = cam.squeeze().cpu().detach().numpy()
cam = (cam - cam.min()) / (cam.max() - cam.min() + 1e-8)
return cam
@app.route('/')
def home():
"""Check that the API is working."""
return "Glaucoma Detection Flask API (3-Class Model) is running!"
@app.route("/test_file")
def test_file():
"""Check if the .pt model file is present and readable."""
filepath = "densenet169_seed40_best2.pt"
if os.path.exists(filepath):
return f"β
Model file found at: {filepath}"
else:
return "β Model file NOT found."
@app.route('/predict', methods=['POST'])
def predict():
"""Perform prediction and save results (including Grad-CAM) to the database."""
if 'file' not in request.files:
return jsonify({'error': 'No file uploaded'}), 400
uploaded_file = request.files['file']
if uploaded_file.filename == '':
return jsonify({'error': 'No file selected'}), 400
try:
# β
Save the uploaded image
timestamp = int(datetime.now().timestamp())
uploaded_filename = f"uploaded_{timestamp}.png"
uploaded_file_path = os.path.join(OUTPUT_DIR, uploaded_filename)
uploaded_file.save(uploaded_file_path)
# β
Perform prediction
img = Image.open(uploaded_file_path).convert('RGB')
input_tensor = transform(img).unsqueeze(0)
# Grad-CAM setup
target_layer_name = "features.2.local_spatial_conv3"
gradcam = GradCAM(model, target_layer_name)
# Forward pass
output = model(input_tensor)
probabilities = F.softmax(output, dim=1).cpu().detach().numpy()[0]
class_index = np.argmax(probabilities)
result = CLASS_NAMES[class_index]
confidence = float(probabilities[class_index])
# Backward pass for Grad-CAM
model.zero_grad()
output[0, class_index].backward()
cam = gradcam.generate(class_index)
# β
Ensure cam is 2D
if cam.ndim == 3:
cam = cam[0]
# β
Scale CAM and resize
cam = np.uint8(255 * cam)
cam = cv2.resize(cam, (224, 224))
# β
Create color overlay
original_img = np.asarray(img.resize((224, 224)))
heatmap = cv2.applyColorMap(cam, cv2.COLORMAP_JET)
overlay = cv2.addWeighted(original_img, 0.6, heatmap, 0.4, 0)
# β
Save color overlay
gradcam_filename = f"gradcam_{timestamp}.png"
gradcam_file_path = os.path.join(OUTPUT_DIR, gradcam_filename)
cv2.imwrite(gradcam_file_path, overlay)
# β
Save grayscale overlay
gray_filename = f"gradcam_gray_{timestamp}.png"
gray_file_path = os.path.join(OUTPUT_DIR, gray_filename)
cv2.imwrite(gray_file_path, cam)
# β
Save results to database
conn = sqlite3.connect(DB_PATH)
cursor = conn.cursor()
cursor.execute("""
INSERT INTO results (image_filename, prediction, confidence, gradcam_filename, timestamp)
VALUES (?, ?, ?, ?, ?)
""", (uploaded_filename, result, confidence, gradcam_filename, datetime.now().isoformat()))
conn.commit()
conn.close()
# β
Return results
return jsonify({
'prediction': result,
'confidence': confidence,
'normal_probability': float(probabilities[0]),
'early_glaucoma_probability': float(probabilities[1]),
'advanced_glaucoma_probability': float(probabilities[2]),
'gradcam_image': gradcam_filename,
'gradcam_gray_image': gray_filename,
'image_filename': uploaded_filename
})
except Exception as e:
return jsonify({'error': str(e)}), 500
@app.route('/results', methods=['GET'])
def results():
"""List all results from the SQLite database."""
conn = sqlite3.connect(DB_PATH)
cursor = conn.cursor()
cursor.execute("SELECT * FROM results ORDER BY timestamp DESC")
results_data = cursor.fetchall()
conn.close()
results_list = []
for record in results_data:
results_list.append({
'id': record[0],
'image_filename': record[1],
'prediction': record[2],
'confidence': record[3],
'gradcam_filename': record[4],
'timestamp': record[5]
})
return jsonify(results_list)
@app.route('/gradcam/<filename>')
def get_gradcam(filename):
"""Serve the Grad-CAM overlay image."""
filepath = os.path.join(OUTPUT_DIR, filename)
if os.path.exists(filepath):
return send_file(filepath, mimetype='image/png')
else:
return jsonify({'error': 'File not found'}), 404
@app.route('/image/<filename>')
def get_image(filename):
"""Serve the original uploaded image."""
filepath = os.path.join(OUTPUT_DIR, filename)
if os.path.exists(filepath):
return send_file(filepath, mimetype='image/png')
else:
return jsonify({'error': 'File not found'}), 404
if __name__ == '__main__':
app.run(host='0.0.0.0', port=7860)
|