Spaces:
Sleeping
Sleeping
File size: 6,803 Bytes
ac9f500 751c399 ac9f500 751c399 ac9f500 d318540 c539386 cf2ad62 0cdf25a cf2ad62 5e8dac1 ac9f500 cc71d5c c544fc1 cc71d5c c544fc1 751c399 d318540 b050424 d318540 8b4e7ae d318540 de50b3c 751c399 d318540 b050424 5e8dac1 b050424 0ac5b89 456a39c 0e25922 0ac5b89 c539386 5a322a1 93d636a b050424 4ca7330 b050424 5e8dac1 4ca7330 b050424 0cdf25a ac9f500 b050424 c539386 ac9f500 751c399 b050424 ac9f500 69c8cf6 ac9f500 cc71d5c 5e8dac1 cc71d5c 3c9ef9c cc71d5c 3c9ef9c 751c399 cc71d5c 5e8dac1 0cdf25a 73e939c c539386 cc71d5c 5e8dac1 edcb5de 5e8dac1 8b4e7ae 5e8dac1 8b4e7ae 5e8dac1 8b4e7ae 5e8dac1 8b4e7ae 5e8dac1 0cdf25a 5e8dac1 8b4e7ae 5e8dac1 b7b8021 5e8dac1 8b4e7ae b7b8021 cc71d5c 8b4e7ae cc71d5c 8b4e7ae b7b8021 cc71d5c c539386 0cdf25a b7b8021 3c9ef9c cc71d5c 5e8dac1 cc71d5c 0cdf25a cc71d5c 8b4e7ae cc71d5c 0cdf25a cc71d5c 0cdf25a cc71d5c 0cdf25a 3c9ef9c 0cdf25a cc71d5c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 |
from flask import Flask, request, jsonify, send_file
from PIL import Image
import torch
import torch.nn.functional as F
from torchvision import transforms
import os
import numpy as np
from datetime import datetime
import sqlite3
import torch.nn as nn
import torchvision.models as models
import cv2
# β
New Grad-CAM++ imports
from pytorch_grad_cam import GradCAMPlusPlus
from pytorch_grad_cam.utils.model_targets import ClassifierOutputTarget
from pytorch_grad_cam.utils.image import show_cam_on_image
app = Flask(__name__)
# β
Directory and database path
OUTPUT_DIR = '/tmp/results'
if not os.path.exists(OUTPUT_DIR):
os.makedirs(OUTPUT_DIR)
DB_PATH = os.path.join(OUTPUT_DIR, 'results.db')
def init_db():
"""Initialize SQLite database for storing results."""
conn = sqlite3.connect(DB_PATH)
cursor = conn.cursor()
cursor.execute("""
CREATE TABLE IF NOT EXISTS results (
id INTEGER PRIMARY KEY AUTOINCREMENT,
image_filename TEXT,
prediction TEXT,
confidence REAL,
gradcam_filename TEXT,
gradcam_gray_filename TEXT,
timestamp TEXT
)
""")
conn.commit()
conn.close()
init_db()
# β
Import your custom GLAM model
from densenet_withglam import get_model_with_attention
# β
Instantiate the model
model = get_model_with_attention('densenet169', num_classes=3) # Will have GLAM
model.load_state_dict(torch.load('densenet169_seed40_best.pt', map_location='cpu'))
model.eval()
# β
Class Names
CLASS_NAMES = ["Advanced", "Early", "Normal"]
# β
Transformation for input images
transform = transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225]),
])
@app.route('/')
def home():
"""Check that the API is working."""
return "Glaucoma Detection Flask API (3-Class Model) is running!"
@app.route("/test_file")
def test_file():
"""Check if the .pt model file is present and readable."""
filepath = "densenet169_seed40_best2.pt"
if os.path.exists(filepath):
return f"β
Model file found at: {filepath}"
else:
return "β Model file NOT found."
@app.route('/predict', methods=['POST'])
def predict():
"""Perform prediction and save results (including Grad-CAM++) to the database."""
if 'file' not in request.files:
return jsonify({'error': 'No file uploaded'}), 400
uploaded_file = request.files['file']
if uploaded_file.filename == '':
return jsonify({'error': 'No file selected'}), 400
try:
# β
Save the uploaded image
timestamp = int(datetime.now().timestamp())
uploaded_filename = f"uploaded_{timestamp}.png"
uploaded_file_path = os.path.join(OUTPUT_DIR, uploaded_filename)
uploaded_file.save(uploaded_file_path)
# β
Perform prediction
img = Image.open(uploaded_file_path).convert('RGB')
input_tensor = transform(img).unsqueeze(0)
# β
Get prediction
output = model(input_tensor)
probabilities = F.softmax(output, dim=1).cpu().detach().numpy()[0]
class_index = np.argmax(probabilities)
result = CLASS_NAMES[class_index]
confidence = float(probabilities[class_index])
# β
Grad-CAM++ setup
target_layer = model.features[2].global_spatial_conv
cam_model = GradCAMPlusPlus(model=model, target_layers=[target_layer])
# β
Get Grad-CAM++ map
cam_output = cam_model(input_tensor=input_tensor, targets=[ClassifierOutputTarget(class_index)])[0]
# β
Create RGB overlay
original_img = np.asarray(img.resize((224, 224)), dtype=np.float32) / 255.0
overlay = show_cam_on_image(original_img, cam_output, use_rgb=True)
# β
Create grayscale version
cam_normalized = np.uint8(255 * cam_output)
# β
Save overlay
gradcam_filename = f"gradcam_{timestamp}.png"
gradcam_file_path = os.path.join(OUTPUT_DIR, gradcam_filename)
cv2.imwrite(gradcam_file_path, cv2.cvtColor(overlay, cv2.COLOR_RGB2BGR))
# β
Save grayscale
gray_filename = f"gradcam_gray_{timestamp}.png"
gray_file_path = os.path.join(OUTPUT_DIR, gray_filename)
cv2.imwrite(gray_file_path, cam_normalized)
# β
Save results to database
conn = sqlite3.connect(DB_PATH)
cursor = conn.cursor()
cursor.execute("""
INSERT INTO results (image_filename, prediction, confidence, gradcam_filename, gradcam_gray_filename, timestamp)
VALUES (?, ?, ?, ?, ?, ?)
""", (uploaded_filename, result, confidence, gradcam_filename, gray_filename, datetime.now().isoformat()))
conn.commit()
conn.close()
# β
Return results
return jsonify({
'prediction': result,
'confidence': confidence,
'normal_probability': float(probabilities[0]),
'early_glaucoma_probability': float(probabilities[1]),
'advanced_glaucoma_probability': float(probabilities[2]),
'gradcam_image': gradcam_filename,
'gradcam_gray_image': gray_filename,
'image_filename': uploaded_filename
})
except Exception as e:
return jsonify({'error': str(e)}), 500
@app.route('/results', methods=['GET'])
def results():
"""List all results from the SQLite database."""
conn = sqlite3.connect(DB_PATH)
cursor = conn.cursor()
cursor.execute("SELECT * FROM results ORDER BY timestamp DESC")
results_data = cursor.fetchall()
conn.close()
results_list = []
for record in results_data:
results_list.append({
'id': record[0],
'image_filename': record[1],
'prediction': record[2],
'confidence': record[3],
'gradcam_filename': record[4],
'gradcam_gray_filename': record[5],
'timestamp': record[6]
})
return jsonify(results_list)
@app.route('/gradcam/<filename>')
def get_gradcam(filename):
"""Serve the Grad-CAM overlay image."""
filepath = os.path.join(OUTPUT_DIR, filename)
if os.path.exists(filepath):
return send_file(filepath, mimetype='image/png')
else:
return jsonify({'error': 'File not found'}), 404
@app.route('/image/<filename>')
def get_image(filename):
"""Serve the original uploaded image."""
filepath = os.path.join(OUTPUT_DIR, filename)
if os.path.exists(filepath):
return send_file(filepath, mimetype='image/png')
else:
return jsonify({'error': 'File not found'}), 404
if __name__ == '__main__':
app.run(host='0.0.0.0', port=7860)
|