File size: 3,678 Bytes
2543f2c
f35dc2e
8c853ac
097fb1d
2543f2c
88a1e0a
 
 
 
2365ad3
88a1e0a
2543f2c
88a1e0a
 
 
cad9104
f35dc2e
 
 
 
 
cad9104
1c68ea4
9c119e5
 
 
 
 
 
 
cad9104
 
f35dc2e
2365ad3
 
 
 
 
 
 
 
f35dc2e
2365ad3
88a1e0a
 
9c119e5
 
 
f35dc2e
9c119e5
 
f35dc2e
ca87238
2aca398
9c119e5
29c5484
2aca398
 
f35dc2e
 
 
88a1e0a
f35dc2e
196aa2c
 
 
 
 
 
 
 
 
 
 
b27b053
196aa2c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2543f2c
88a1e0a
196aa2c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
import gradio as gr
import os
from deep_translator import GoogleTranslator
from huggingface_hub import InferenceClient

HF_TOKEN = os.environ.get("HUGGINGFACE_API_TOKEN")
if not HF_TOKEN:
    raise RuntimeError("Missing HUGGINGFACE_API_TOKEN secret")

hf_client = InferenceClient(token=HF_TOKEN)

def generate_topics(field, major, keywords, audience, level):
    if not all([field.strip(), major.strip(), keywords.strip(), audience.strip()]):
        return "<div style='color: red;'>❌ لطفاً همه فیلدها را پر کنید.</div>"

    base_prompt = (
        f"Suggest 3 academic thesis topics based on the following:\n"
        f"Field: {field}\n"
        f"Specialization: {major}\n"
        f"Keywords: {keywords}\n"
        f"Target Audience: {audience}\n"
        f"Level: {level}\n"
    )
    extra = (
        "Since this is a doctoral-level project, focus on proposing theoretical frameworks, "
        "advanced modeling approaches, and in-depth methodological contributions."
        if level == "دکتری"
        else
        "Focus on practical and applied thesis topics suitable for a master's level student."
    )
    prompt = base_prompt + extra

    try:
        response = hf_client.chat.completions.create(
            model="deepseek-ai/DeepSeek-Prover-V2-671B",
            messages=[
                {"role": "system", "content": "You are an academic advisor assistant."},
                {"role": "user", "content": prompt}
            ],
            temperature=0.7,
            max_tokens=512
        )
        english_output = response.choices[0].message.content.strip()

        try:
            translated = GoogleTranslator(source='en', target='fa').translate(english_output)
        except:
            translated = english_output

        items = [f"<li>{line}</li>" for line in translated.split("\n") if line.strip()]
        translated_html = "<ol>" + "".join(items) + "</ol>"

        return (
            "<div>"
            f"{translated_html}"
            "<br><br>📢 برای مشاوره و راهنمایی تخصصی با گروه مشاوره کاسپین تماس بگیرید:<br>"
            "<strong>021-88252497</strong>"
            "</div>"
        )

    except Exception as e:
        return f"<div style='color: red;'>❌ خطا در تماس با مدل DeepSeek: {e}</div>"

iface = gr.Interface(
    fn=generate_topics,
    inputs=[
        gr.Textbox(label="رشته", placeholder="مثال: کامپیوتر"),
        gr.Textbox(label="گرایش", placeholder="مثال: هوش مصنوعی"),
        gr.Textbox(label="کلیدواژه‌ها", placeholder="مثال: یادگیری عمیق، بینایی ماشین"),
        gr.Textbox(label="جامعه هدف", placeholder="مثال: دانشجویان دکتری"),
        gr.Dropdown(["کارشناسی ارشد", "دکتری"], label="مقطع")
    ],
    outputs=gr.HTML(label="موضوعات پیشنهادی", elem_id="output_box"),
    title="🎓 پیشنهادگر موضوع پایان‌نامه کاسپین",
    logo="logo.png",          # ← لوگوی شما
    theme="default",
    css="""
        #output_box {
            min-height: 350px !important;
            max-height: 600px !important;
            overflow-y: auto !important;
            background-color: #1e1e1e !important;
            color: white !important;
            padding: 20px;
            border: 2px solid #ccc;
            font-family: 'Tahoma', sans-serif;
            font-size: 16px;
            text-align: right;
            direction: rtl;
            line-height: 1.8;
        }
    """
)

if __name__ == "__main__":
    iface.launch()