Spaces:
Running
Running
File size: 19,271 Bytes
7f0f123 b6ee1cf 7f0f123 b6ee1cf 7f0f123 b6ee1cf 7f0f123 b6ee1cf 7f0f123 b6ee1cf 7f0f123 b6ee1cf 7f0f123 b6ee1cf 7f0f123 b6ee1cf 7f0f123 b6ee1cf 7f0f123 b6ee1cf 7f0f123 f0f4ea7 7f0f123 b6ee1cf 7f0f123 b6ee1cf 7f0f123 b6ee1cf 7f0f123 e1dd24c b6ee1cf 0fde3f5 b6ee1cf 0fde3f5 b6ee1cf 0fde3f5 aa8913d b6ee1cf 7f0f123 b6ee1cf 7f0f123 b8338e1 a63396a b6ee1cf b8338e1 7f0f123 b6ee1cf 0fde3f5 b6ee1cf 0fde3f5 7f0f123 0fde3f5 b6ee1cf 0fde3f5 b6ee1cf 0fde3f5 b6ee1cf 0fde3f5 b6ee1cf 0fde3f5 b6ee1cf 0fde3f5 b6ee1cf f0f4ea7 0fde3f5 b6ee1cf 0fde3f5 f0f4ea7 b6ee1cf 0fde3f5 b6ee1cf f0f4ea7 7f0f123 b6ee1cf 0fde3f5 b6ee1cf 7f0f123 b6ee1cf 7f0f123 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 |
import gradio as gr
import os
import cv2
import numpy as np
import torch
import torch.nn.functional as F
from PIL import Image
import tempfile
import io
from depth_anything.dpt import DepthAnything_AC
def normalize_depth(disparity_tensor):
"""Standard normalization method to convert disparity to depth"""
eps = 1e-6
disparity_min = disparity_tensor.min()
disparity_max = disparity_tensor.max()
normalized_disparity = (disparity_tensor - disparity_min) / (disparity_max - disparity_min + eps)
return normalized_disparity
def is_video_file(filepath):
"""Check if the given file is a video file based on its extension"""
if filepath is None:
return False
video_extensions = ['.mp4', '.avi', '.mov', '.mkv', '.flv', '.wmv', '.webm', '.m4v']
_, ext = os.path.splitext(filepath.lower())
return ext in video_extensions
def load_model(model_path='checkpoints/depth_anything_AC_vits.pth', encoder='vits'):
"""Load trained depth estimation model"""
model_configs = {
'vitl': {'encoder': 'vitl', 'features': 256, 'out_channels': [256, 512, 1024, 1024], 'version': 'v2'},
'vitb': {'encoder': 'vitb', 'features': 128, 'out_channels': [96, 192, 384, 768], 'version': 'v2'},
'vits': {'encoder': 'vits', 'features': 64, 'out_channels': [48, 96, 192, 384], 'version': 'v2'}
}
model = DepthAnything_AC(model_configs[encoder])
if os.path.exists(model_path):
checkpoint = torch.load(model_path, map_location='cpu')
model.load_state_dict(checkpoint, strict=False)
else:
print(f"Warning: Model file {model_path} not found")
model.eval()
if torch.cuda.is_available():
model.cuda()
return model
def preprocess_image(image, target_size=518):
"""Preprocess input image (supports both PIL Image and numpy array)"""
if isinstance(image, str):
raw_image = cv2.imread(image)
if raw_image is None:
raise ValueError(f"Cannot read image: {image}")
image = cv2.cvtColor(raw_image, cv2.COLOR_BGR2RGB).astype(np.float32) / 255.0
elif isinstance(image, Image.Image):
image = np.array(image)
image = image.astype(np.float32) / 255.0
elif isinstance(image, np.ndarray):
if image.dtype == np.uint8:
image = image.astype(np.float32) / 255.0
else:
raise ValueError(f"Unsupported image type: {type(image)}")
if len(image.shape) == 3 and image.shape[2] == 3:
pass
elif len(image.shape) == 3 and image.shape[2] == 4:
image = image[:, :, :3]
h, w = image.shape[:2]
scale = target_size / min(h, w)
new_h, new_w = int(h * scale), int(w * scale)
new_h = ((new_h + 13) // 14) * 14
new_w = ((new_w + 13) // 14) * 14
image = cv2.resize(image, (new_w, new_h), interpolation=cv2.INTER_CUBIC)
mean = np.array([0.485, 0.456, 0.406])
std = np.array([0.229, 0.224, 0.225])
image = (image - mean) / std
image = torch.from_numpy(image.transpose(2, 0, 1)).float()
image = image.unsqueeze(0)
return image, (h, w)
def postprocess_depth(depth_tensor, original_size):
"""Post-process depth map"""
if depth_tensor.dim() == 3:
depth_tensor = depth_tensor.unsqueeze(1)
elif depth_tensor.dim() == 2:
depth_tensor = depth_tensor.unsqueeze(0).unsqueeze(1)
h, w = original_size
depth = F.interpolate(depth_tensor, size=(h, w), mode='bilinear', align_corners=True)
depth = depth.squeeze().cpu().numpy()
return depth
def create_colored_depth_map(depth, colormap='spectral'):
"""Create colored depth map"""
if colormap == 'inferno':
depth_colored = cv2.applyColorMap((depth * 255).astype(np.uint8), cv2.COLORMAP_INFERNO)
depth_colored = cv2.cvtColor(depth_colored, cv2.COLOR_BGR2RGB)
elif colormap == 'spectral':
from matplotlib import cm
spectral_cmap = cm.get_cmap('Spectral_r')
depth_colored = (spectral_cmap(depth) * 255).astype(np.uint8)
depth_colored = depth_colored[:, :, :3]
else:
depth_colored = (depth * 255).astype(np.uint8)
depth_colored = np.stack([depth_colored] * 3, axis=2)
return depth_colored
def process_video(video_path, colormap_choice, progress=gr.Progress()):
"""Process video file for depth estimation"""
try:
print(f"Processing video: {video_path}")
cap = cv2.VideoCapture(video_path)
if not cap.isOpened():
raise ValueError(f"Cannot open video file: {video_path}")
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
input_fps = cap.get(cv2.CAP_PROP_FPS)
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
print(f"Video properties: {total_frames} frames, {input_fps} FPS, {width}x{height}")
temp_output = tempfile.NamedTemporaryFile(delete=False, suffix='.mp4')
output_path = temp_output.name
temp_output.close()
fourcc = cv2.VideoWriter.fourcc(*'mp4v')
out = cv2.VideoWriter(output_path, fourcc, input_fps, (width, height))
if not out.isOpened():
cap.release()
raise ValueError("Cannot create output video file")
frame_count = 0
try:
while True:
ret, frame = cap.read()
if not ret:
break
frame_count += 1
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
try:
image_tensor, original_size = preprocess_image(frame_rgb)
if torch.cuda.is_available():
image_tensor = image_tensor.cuda()
with torch.no_grad():
prediction = model(image_tensor)
disparity_tensor = prediction['out']
depth_tensor = normalize_depth(disparity_tensor)
depth = postprocess_depth(depth_tensor, original_size)
if depth is None:
if depth_tensor.dim() == 1:
h, w = original_size
expected_size = h * w
if depth_tensor.shape[0] == expected_size:
depth_tensor = depth_tensor.view(1, 1, h, w)
else:
import math
side_length = int(math.sqrt(depth_tensor.shape[0]))
if side_length * side_length == depth_tensor.shape[0]:
depth_tensor = depth_tensor.view(1, 1, side_length, side_length)
depth = postprocess_depth(depth_tensor, original_size)
if depth is None:
print(f"Warning: Frame {frame_count} processing failed, using black frame")
depth_frame = np.zeros((height, width, 3), dtype=np.uint8)
else:
if colormap_choice.lower() == 'inferno':
depth_frame = cv2.applyColorMap((depth * 255).astype(np.uint8), cv2.COLORMAP_INFERNO)
elif colormap_choice.lower() == 'spectral':
from matplotlib import cm
spectral_cmap = cm.get_cmap('Spectral_r')
depth_frame = (spectral_cmap(depth) * 255).astype(np.uint8)
depth_frame = depth_frame[:, :, :3]
depth_frame = cv2.cvtColor(depth_frame, cv2.COLOR_RGB2BGR)
else:
depth_frame = (depth * 255).astype(np.uint8)
depth_frame = cv2.cvtColor(depth_frame, cv2.COLOR_GRAY2BGR)
out.write(depth_frame)
except Exception as e:
print(f"Error processing frame {frame_count}: {str(e)}")
black_frame = np.zeros((height, width, 3), dtype=np.uint8)
out.write(black_frame)
progress((frame_count / total_frames), f"Processing progress: {frame_count}/{total_frames} frames")
except Exception as e:
print(f"Unexpected error during video processing: {str(e)}")
finally:
cap.release()
out.release()
print(f"Video processing completed! Output saved to: {output_path}")
return output_path
except Exception as e:
print(f"Video processing failed: {str(e)}")
return None
print("Loading model...")
model = load_model()
print("Model loaded successfully!")
def predict_depth(input_file, colormap_choice):
"""Main depth prediction function for both images and videos"""
try:
if input_file is None:
return None, gr.update(visible=False)
if is_video_file(input_file):
output_path = process_video(input_file, colormap_choice)
if output_path:
return output_path, gr.update(visible=True, value=output_path)
else:
return None, gr.update(visible=False)
else:
if isinstance(input_file, str):
input_image = Image.open(input_file)
else:
input_image = input_file
image_tensor, original_size = preprocess_image(input_image)
if torch.cuda.is_available():
image_tensor = image_tensor.cuda()
with torch.no_grad():
prediction = model(image_tensor)
disparity_tensor = prediction['out']
depth_tensor = normalize_depth(disparity_tensor)
depth = postprocess_depth(depth_tensor, original_size)
depth_colored = create_colored_depth_map(depth, colormap_choice.lower())
result = Image.fromarray(depth_colored)
temp_file = tempfile.NamedTemporaryFile(delete=False, suffix='.png')
result.save(temp_file.name)
return result, gr.update(visible=True, value=temp_file.name)
except Exception as e:
print(f"Error during inference: {str(e)}")
return None, gr.update(visible=False)
def capture_and_predict(camera_image, colormap_choice):
"""Capture image from camera and predict depth"""
return predict_depth(camera_image, colormap_choice)
with gr.Blocks(title="Depth Anything AC - Depth Estimation Demo", theme=gr.themes.Soft(), css="""
.image-container {
display: flex !important;
align-items: flex-start !important;
justify-content: center !important;
}
.gradio-image {
vertical-align: top !important;
}
""") as demo:
gr.Markdown("""
# π Depth Anything AC - Depth Estimation Demo
Upload an image or use your camera to generate corresponding depth maps! Different colors in the depth map represent different distances, allowing you to see the three-dimensional structure of the image.
## How to Use
1. **Upload Mode**: Click the upload area to select an image or video file
2. **Camera Mode**: Use your camera to capture a live image
3. Choose your preferred colormap style
4. Click the "Generate Depth Map" button
5. View the results and download
""")
with gr.Row():
input_source = gr.Radio(
choices=["Upload Image", "Upload Video", "Use Camera"],
value="Upload Image",
label="Input Source"
)
colormap_choice = gr.Dropdown(
choices=["Spectral", "Inferno", "Gray"],
value="Spectral",
label="Colormap Style"
)
submit_btn = gr.Button(
"π― Generate Depth Map",
variant="primary",
size="lg"
)
with gr.Row():
gr.HTML("<h3 style='text-align: center; margin: 10px;'>π· Input Image</h3>")
gr.HTML("<h3 style='text-align: center; margin: 10px;'>π Depth Map Result</h3>")
with gr.Row(equal_height=True):
with gr.Column(scale=1):
# Image input component for preview and examples
upload_image = gr.Image(
type="pil",
height=450,
visible=True,
show_label=False,
container=False,
label="Upload Image"
)
# File component for video uploads
upload_file = gr.File(
file_types=["video"],
height=200,
visible=False,
show_label=False,
container=False,
label="Upload Video"
)
# Camera component
camera_image = gr.Image(
type="pil",
sources=["webcam"],
height=450,
visible=False,
show_label=False,
container=False
)
with gr.Column(scale=1):
output_file = gr.File(
height=450,
show_label=False,
container=False,
visible=False
)
output_image = gr.Image(
type="pil",
height=450,
show_label=False,
container=False,
visible=True
)
download_btn = gr.DownloadButton(
label="π₯ Download Result",
variant="secondary",
size="sm",
visible=False
)
def switch_input_source(source):
if source == "Upload Image":
return gr.update(visible=True), gr.update(visible=False), gr.update(visible=False)
elif source == "Upload Video":
return gr.update(visible=False), gr.update(visible=True), gr.update(visible=False)
else: # Use Camera
return gr.update(visible=False), gr.update(visible=False), gr.update(visible=True)
input_source.change(
fn=switch_input_source,
inputs=[input_source],
outputs=[upload_image, upload_file, camera_image]
)
def handle_prediction(input_source, upload_img, upload_file_path, camera_img, colormap):
if input_source == "Upload Image":
if upload_img is None:
return None, None, gr.update(visible=False), gr.update(visible=False)
result, download_update = predict_depth(upload_img, colormap)
return result, None, gr.update(visible=True), download_update
elif input_source == "Upload Video":
if upload_file_path is None:
return None, None, gr.update(visible=False), gr.update(visible=False)
result, download_update = predict_depth(upload_file_path, colormap)
if isinstance(result, str) and is_video_file(result):
return None, result, gr.update(visible=False), download_update
else:
return result, None, gr.update(visible=True), download_update
else: # Use Camera
result, download_update = predict_depth(camera_img, colormap)
return result, None, gr.update(visible=True), download_update
# Separate image and video examples
image_examples = []
video_examples = []
if os.path.exists("toyset"):
for img_file in ["1.png", "2.png", "good.png"]:
if os.path.exists(f"toyset/{img_file}"):
image_examples.append([f"toyset/{img_file}", "Spectral"])
for vid_file in ["fog_2_processed_1s-6s_1.0x.mp4", "snow_processed_1s-6s_1.0x.mp4"]:
if os.path.exists(f"toyset/{vid_file}"):
video_examples.append([f"toyset/{vid_file}", "Spectral"])
# Function to handle video example selection and auto-switch mode
def handle_video_example(video_path, colormap):
# Auto-switch to video mode and return the necessary updates
return (
"Upload Video", # input_source
gr.update(visible=False), # upload_image
gr.update(visible=True, value=video_path), # upload_file
gr.update(visible=False) # camera_image
)
# Function to handle image example selection and auto-switch mode
def handle_image_example(image, colormap):
# Auto-switch to image mode and process the image
result = predict_depth(image, colormap)
output_image = result[0] if result[0] is not None else None
return (
"Upload Image", # input_source
gr.update(visible=True, value=image), # upload_image
gr.update(visible=False), # upload_file
gr.update(visible=False), # camera_image
output_image # output_image
)
if image_examples:
gr.Examples(
examples=image_examples,
inputs=[upload_image, colormap_choice],
outputs=[input_source, upload_image, upload_file, camera_image, output_image],
fn=handle_image_example,
cache_examples=False,
label="Try these example images"
)
if video_examples:
gr.Examples(
examples=video_examples,
inputs=[upload_file, colormap_choice],
outputs=[input_source, upload_image, upload_file, camera_image],
fn=handle_video_example,
cache_examples=False,
label="Try these example videos"
)
submit_btn.click(
fn=handle_prediction,
inputs=[input_source, upload_image, upload_file, camera_image, colormap_choice],
outputs=[output_image, output_file, output_image, download_btn],
show_progress=True
)
gr.Markdown("""
## π Colormap Description
- **Spectral**: Rainbow spectrum, with clear contrast between near and far
- **Inferno**: Fire spectrum, warm tones
- **Gray**: Classic grayscale depth representation
## π· Camera Usage Tips
- Ensure camera access is allowed when prompted
- Click the camera button to capture the current frame
- The captured image will be used as input for depth estimation
## π¬ Video Processing Tips
- Supports multiple video formats (MP4, AVI, MOV, etc.)
- Video processing may take some time, please be patient
- Processing progress will be displayed in real-time
- The output video will maintain the same frame rate as the input
""")
if __name__ == "__main__":
demo.launch(
server_name="0.0.0.0",
server_port=7860,
share=False,
show_error=True
) |