File size: 19,271 Bytes
7f0f123
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b6ee1cf
 
 
 
 
 
 
 
 
7f0f123
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b6ee1cf
 
 
 
 
 
 
7f0f123
b6ee1cf
 
 
 
 
 
7f0f123
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b6ee1cf
 
7f0f123
b6ee1cf
 
 
 
 
 
 
 
 
 
7f0f123
b6ee1cf
7f0f123
b6ee1cf
 
 
7f0f123
b6ee1cf
 
7f0f123
b6ee1cf
 
 
7f0f123
b6ee1cf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7f0f123
 
 
f0f4ea7
7f0f123
 
b6ee1cf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7f0f123
 
 
b6ee1cf
7f0f123
 
b6ee1cf
 
 
 
 
7f0f123
 
e1dd24c
b6ee1cf
0fde3f5
b6ee1cf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0fde3f5
 
 
b6ee1cf
 
 
 
0fde3f5
 
 
 
 
 
 
 
 
 
 
aa8913d
 
b6ee1cf
 
 
 
 
 
 
 
7f0f123
 
b6ee1cf
 
 
 
 
 
7f0f123
b8338e1
a63396a
 
b6ee1cf
 
 
 
 
 
 
 
 
 
 
b8338e1
7f0f123
b6ee1cf
 
0fde3f5
 
 
 
 
b6ee1cf
 
 
 
0fde3f5
7f0f123
 
0fde3f5
b6ee1cf
0fde3f5
 
 
 
 
 
 
b6ee1cf
 
 
 
 
 
 
 
 
0fde3f5
b6ee1cf
 
 
0fde3f5
 
 
b6ee1cf
 
 
0fde3f5
b6ee1cf
 
 
0fde3f5
b6ee1cf
f0f4ea7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0fde3f5
b6ee1cf
0fde3f5
 
f0f4ea7
 
b6ee1cf
0fde3f5
b6ee1cf
 
f0f4ea7
 
 
 
 
 
 
 
 
 
7f0f123
b6ee1cf
0fde3f5
b6ee1cf
7f0f123
 
 
 
b6ee1cf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7f0f123
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
import gradio as gr
import os
import cv2
import numpy as np
import torch
import torch.nn.functional as F
from PIL import Image
import tempfile
import io

from depth_anything.dpt import DepthAnything_AC


def normalize_depth(disparity_tensor):
    """Standard normalization method to convert disparity to depth"""
    eps = 1e-6
    disparity_min = disparity_tensor.min()
    disparity_max = disparity_tensor.max()
    normalized_disparity = (disparity_tensor - disparity_min) / (disparity_max - disparity_min + eps)
    return normalized_disparity


def is_video_file(filepath):
    """Check if the given file is a video file based on its extension"""
    if filepath is None:
        return False
    video_extensions = ['.mp4', '.avi', '.mov', '.mkv', '.flv', '.wmv', '.webm', '.m4v']
    _, ext = os.path.splitext(filepath.lower())
    return ext in video_extensions


def load_model(model_path='checkpoints/depth_anything_AC_vits.pth', encoder='vits'):
    """Load trained depth estimation model"""
    model_configs = {
        'vitl': {'encoder': 'vitl', 'features': 256, 'out_channels': [256, 512, 1024, 1024], 'version': 'v2'},
        'vitb': {'encoder': 'vitb', 'features': 128, 'out_channels': [96, 192, 384, 768], 'version': 'v2'},
        'vits': {'encoder': 'vits', 'features': 64, 'out_channels': [48, 96, 192, 384], 'version': 'v2'}
    }
    
    model = DepthAnything_AC(model_configs[encoder])
    
    if os.path.exists(model_path):
        checkpoint = torch.load(model_path, map_location='cpu')
        model.load_state_dict(checkpoint, strict=False)
    else:
        print(f"Warning: Model file {model_path} not found")
        
    model.eval()
    if torch.cuda.is_available():
        model.cuda()
    
    return model


def preprocess_image(image, target_size=518):
    """Preprocess input image (supports both PIL Image and numpy array)"""
    if isinstance(image, str):
        raw_image = cv2.imread(image)
        if raw_image is None:
            raise ValueError(f"Cannot read image: {image}")
        image = cv2.cvtColor(raw_image, cv2.COLOR_BGR2RGB).astype(np.float32) / 255.0
    elif isinstance(image, Image.Image):
        image = np.array(image)
        image = image.astype(np.float32) / 255.0
    elif isinstance(image, np.ndarray):
        if image.dtype == np.uint8:
            image = image.astype(np.float32) / 255.0
    else:
        raise ValueError(f"Unsupported image type: {type(image)}")
    
    if len(image.shape) == 3 and image.shape[2] == 3:
        pass
    elif len(image.shape) == 3 and image.shape[2] == 4:
        image = image[:, :, :3]
    
    h, w = image.shape[:2]
    scale = target_size / min(h, w)
    new_h, new_w = int(h * scale), int(w * scale)
    
    new_h = ((new_h + 13) // 14) * 14
    new_w = ((new_w + 13) // 14) * 14
    image = cv2.resize(image, (new_w, new_h), interpolation=cv2.INTER_CUBIC)

    mean = np.array([0.485, 0.456, 0.406])
    std = np.array([0.229, 0.224, 0.225])
    image = (image - mean) / std

    image = torch.from_numpy(image.transpose(2, 0, 1)).float()
    image = image.unsqueeze(0)
    
    return image, (h, w)


def postprocess_depth(depth_tensor, original_size):
    """Post-process depth map"""
    if depth_tensor.dim() == 3:
        depth_tensor = depth_tensor.unsqueeze(1)
    elif depth_tensor.dim() == 2:
        depth_tensor = depth_tensor.unsqueeze(0).unsqueeze(1)
    
    h, w = original_size
    depth = F.interpolate(depth_tensor, size=(h, w), mode='bilinear', align_corners=True)
    depth = depth.squeeze().cpu().numpy()
    
    return depth


def create_colored_depth_map(depth, colormap='spectral'):
    """Create colored depth map"""
    if colormap == 'inferno':
        depth_colored = cv2.applyColorMap((depth * 255).astype(np.uint8), cv2.COLORMAP_INFERNO)
        depth_colored = cv2.cvtColor(depth_colored, cv2.COLOR_BGR2RGB)
    elif colormap == 'spectral':
        from matplotlib import cm
        spectral_cmap = cm.get_cmap('Spectral_r')
        depth_colored = (spectral_cmap(depth) * 255).astype(np.uint8)
        depth_colored = depth_colored[:, :, :3]
    else:
        depth_colored = (depth * 255).astype(np.uint8)
        depth_colored = np.stack([depth_colored] * 3, axis=2)
    
    return depth_colored


def process_video(video_path, colormap_choice, progress=gr.Progress()):
    """Process video file for depth estimation"""
    try:
        print(f"Processing video: {video_path}")
        
        cap = cv2.VideoCapture(video_path)
        if not cap.isOpened():
            raise ValueError(f"Cannot open video file: {video_path}")
        
        total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
        input_fps = cap.get(cv2.CAP_PROP_FPS)
        width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
        height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
        
        print(f"Video properties: {total_frames} frames, {input_fps} FPS, {width}x{height}")
        
        temp_output = tempfile.NamedTemporaryFile(delete=False, suffix='.mp4')
        output_path = temp_output.name
        temp_output.close()
        
        fourcc = cv2.VideoWriter.fourcc(*'mp4v')
        out = cv2.VideoWriter(output_path, fourcc, input_fps, (width, height))
        
        if not out.isOpened():
            cap.release()
            raise ValueError("Cannot create output video file")
        
        frame_count = 0
        
        try:
            while True:
                ret, frame = cap.read()
                if not ret:
                    break
                
                frame_count += 1
                
                frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
                
                try:
                    image_tensor, original_size = preprocess_image(frame_rgb)
                    
                    if torch.cuda.is_available():
                        image_tensor = image_tensor.cuda()
                    
                    with torch.no_grad():
                        prediction = model(image_tensor)
                        disparity_tensor = prediction['out']
                        depth_tensor = normalize_depth(disparity_tensor)
                    
                    depth = postprocess_depth(depth_tensor, original_size)
                    
                    if depth is None:
                        if depth_tensor.dim() == 1:
                            h, w = original_size
                            expected_size = h * w
                            if depth_tensor.shape[0] == expected_size:
                                depth_tensor = depth_tensor.view(1, 1, h, w)
                            else:
                                import math
                                side_length = int(math.sqrt(depth_tensor.shape[0]))
                                if side_length * side_length == depth_tensor.shape[0]:
                                    depth_tensor = depth_tensor.view(1, 1, side_length, side_length)
                        depth = postprocess_depth(depth_tensor, original_size)
                    
                    if depth is None:
                        print(f"Warning: Frame {frame_count} processing failed, using black frame")
                        depth_frame = np.zeros((height, width, 3), dtype=np.uint8)
                    else:
                        if colormap_choice.lower() == 'inferno':
                            depth_frame = cv2.applyColorMap((depth * 255).astype(np.uint8), cv2.COLORMAP_INFERNO)
                        elif colormap_choice.lower() == 'spectral':
                            from matplotlib import cm
                            spectral_cmap = cm.get_cmap('Spectral_r')
                            depth_frame = (spectral_cmap(depth) * 255).astype(np.uint8)
                            depth_frame = depth_frame[:, :, :3]
                            depth_frame = cv2.cvtColor(depth_frame, cv2.COLOR_RGB2BGR)
                        else:
                            depth_frame = (depth * 255).astype(np.uint8)
                            depth_frame = cv2.cvtColor(depth_frame, cv2.COLOR_GRAY2BGR)
                    
                    out.write(depth_frame)
                    
                except Exception as e:
                    print(f"Error processing frame {frame_count}: {str(e)}")
                    black_frame = np.zeros((height, width, 3), dtype=np.uint8)
                    out.write(black_frame)
                
                progress((frame_count / total_frames), f"Processing progress: {frame_count}/{total_frames} frames")
                
        except Exception as e:
            print(f"Unexpected error during video processing: {str(e)}")
        finally:
            cap.release()
            out.release()
        
        print(f"Video processing completed! Output saved to: {output_path}")
        return output_path
        
    except Exception as e:
        print(f"Video processing failed: {str(e)}")
        return None


print("Loading model...")
model = load_model()
print("Model loaded successfully!")


def predict_depth(input_file, colormap_choice):
    """Main depth prediction function for both images and videos"""
    try:
        if input_file is None:
            return None, gr.update(visible=False)
            
        if is_video_file(input_file):
            output_path = process_video(input_file, colormap_choice)
            if output_path:
                return output_path, gr.update(visible=True, value=output_path)
            else:
                return None, gr.update(visible=False)
        else:
            if isinstance(input_file, str):
                input_image = Image.open(input_file)
            else:
                input_image = input_file
                
            image_tensor, original_size = preprocess_image(input_image)
            
            if torch.cuda.is_available():
                image_tensor = image_tensor.cuda()
            
            with torch.no_grad():
                prediction = model(image_tensor)
                disparity_tensor = prediction['out']
                depth_tensor = normalize_depth(disparity_tensor)
            
            depth = postprocess_depth(depth_tensor, original_size)
            depth_colored = create_colored_depth_map(depth, colormap_choice.lower())
            
            result = Image.fromarray(depth_colored)
            
            temp_file = tempfile.NamedTemporaryFile(delete=False, suffix='.png')
            result.save(temp_file.name)
            
            return result, gr.update(visible=True, value=temp_file.name)
        
    except Exception as e:
        print(f"Error during inference: {str(e)}")
        return None, gr.update(visible=False)


def capture_and_predict(camera_image, colormap_choice):
    """Capture image from camera and predict depth"""
    return predict_depth(camera_image, colormap_choice)


with gr.Blocks(title="Depth Anything AC - Depth Estimation Demo", theme=gr.themes.Soft(), css="""
    .image-container { 
        display: flex !important; 
        align-items: flex-start !important; 
        justify-content: center !important; 
    }
    .gradio-image { 
        vertical-align: top !important; 
    }
""") as demo:
    gr.Markdown("""
    # 🌊 Depth Anything AC - Depth Estimation Demo
    
    Upload an image or use your camera to generate corresponding depth maps! Different colors in the depth map represent different distances, allowing you to see the three-dimensional structure of the image.
    
    ## How to Use
    1. **Upload Mode**: Click the upload area to select an image or video file
    2. **Camera Mode**: Use your camera to capture a live image
    3. Choose your preferred colormap style
    4. Click the "Generate Depth Map" button
    5. View the results and download
    """)
    
    with gr.Row():
        input_source = gr.Radio(
            choices=["Upload Image", "Upload Video", "Use Camera"],
            value="Upload Image",
            label="Input Source"
        )
        colormap_choice = gr.Dropdown(
            choices=["Spectral", "Inferno", "Gray"],
            value="Spectral",
            label="Colormap Style"
        )
        submit_btn = gr.Button(
            "🎯 Generate Depth Map",
            variant="primary",
            size="lg"
        )
    
    with gr.Row():
        gr.HTML("<h3 style='text-align: center; margin: 10px;'>πŸ“· Input Image</h3>")
        gr.HTML("<h3 style='text-align: center; margin: 10px;'>🌊 Depth Map Result</h3>")
    
    with gr.Row(equal_height=True):
        with gr.Column(scale=1):
            # Image input component for preview and examples
            upload_image = gr.Image(
                type="pil",
                height=450,
                visible=True,
                show_label=False,
                container=False,
                label="Upload Image"
            )
            
            # File component for video uploads
            upload_file = gr.File(
                file_types=["video"],
                height=200,
                visible=False,
                show_label=False,
                container=False,
                label="Upload Video"
            )
            
            # Camera component
            camera_image = gr.Image(
                type="pil", 
                sources=["webcam"],
                height=450,
                visible=False,
                show_label=False,
                container=False
            )
            
        with gr.Column(scale=1):
            output_file = gr.File(
                height=450,
                show_label=False,
                container=False,
                visible=False
            )
            
            output_image = gr.Image(
                type="pil",
                height=450,
                show_label=False,
                container=False,
                visible=True
            )
            
            download_btn = gr.DownloadButton(
                label="πŸ“₯ Download Result",
                variant="secondary",
                size="sm",
                visible=False
            )
    
    def switch_input_source(source):
        if source == "Upload Image":
            return gr.update(visible=True), gr.update(visible=False), gr.update(visible=False)
        elif source == "Upload Video":
            return gr.update(visible=False), gr.update(visible=True), gr.update(visible=False)
        else:  # Use Camera
            return gr.update(visible=False), gr.update(visible=False), gr.update(visible=True)
    
    input_source.change(
        fn=switch_input_source,
        inputs=[input_source],
        outputs=[upload_image, upload_file, camera_image]
    )
    
    def handle_prediction(input_source, upload_img, upload_file_path, camera_img, colormap):
        if input_source == "Upload Image":
            if upload_img is None:
                return None, None, gr.update(visible=False), gr.update(visible=False)
            
            result, download_update = predict_depth(upload_img, colormap)
            return result, None, gr.update(visible=True), download_update
            
        elif input_source == "Upload Video":
            if upload_file_path is None:
                return None, None, gr.update(visible=False), gr.update(visible=False)
            
            result, download_update = predict_depth(upload_file_path, colormap)
            
            if isinstance(result, str) and is_video_file(result):
                return None, result, gr.update(visible=False), download_update
            else:
                return result, None, gr.update(visible=True), download_update
        else:  # Use Camera
            result, download_update = predict_depth(camera_img, colormap)
            return result, None, gr.update(visible=True), download_update
    
    # Separate image and video examples
    image_examples = []
    video_examples = []
    if os.path.exists("toyset"):
        for img_file in ["1.png", "2.png", "good.png"]:
            if os.path.exists(f"toyset/{img_file}"):
                image_examples.append([f"toyset/{img_file}", "Spectral"])
        
        for vid_file in ["fog_2_processed_1s-6s_1.0x.mp4", "snow_processed_1s-6s_1.0x.mp4"]:
            if os.path.exists(f"toyset/{vid_file}"):
                video_examples.append([f"toyset/{vid_file}", "Spectral"])
    
    # Function to handle video example selection and auto-switch mode
    def handle_video_example(video_path, colormap):
        # Auto-switch to video mode and return the necessary updates
        return (
            "Upload Video",  # input_source
            gr.update(visible=False),  # upload_image
            gr.update(visible=True, value=video_path),  # upload_file
            gr.update(visible=False)  # camera_image
        )
    
    # Function to handle image example selection and auto-switch mode
    def handle_image_example(image, colormap):
        # Auto-switch to image mode and process the image
        result = predict_depth(image, colormap)
        output_image = result[0] if result[0] is not None else None
        return (
            "Upload Image",  # input_source
            gr.update(visible=True, value=image),  # upload_image
            gr.update(visible=False),  # upload_file
            gr.update(visible=False),  # camera_image
            output_image  # output_image
        )
    
    if image_examples:
        gr.Examples(
            examples=image_examples,
            inputs=[upload_image, colormap_choice],
            outputs=[input_source, upload_image, upload_file, camera_image, output_image],
            fn=handle_image_example,
            cache_examples=False,
            label="Try these example images"
        )
    
    if video_examples:
        gr.Examples(
            examples=video_examples,
            inputs=[upload_file, colormap_choice],
            outputs=[input_source, upload_image, upload_file, camera_image],
            fn=handle_video_example,
            cache_examples=False,
            label="Try these example videos"
        )
    
    submit_btn.click(
        fn=handle_prediction,
        inputs=[input_source, upload_image, upload_file, camera_image, colormap_choice],
        outputs=[output_image, output_file, output_image, download_btn],
        show_progress=True
    )
    
    gr.Markdown("""
    ## πŸ“ Colormap Description
    - **Spectral**: Rainbow spectrum, with clear contrast between near and far
    - **Inferno**: Fire spectrum, warm tones
    - **Gray**: Classic grayscale depth representation
    
    ## πŸ“· Camera Usage Tips
    - Ensure camera access is allowed when prompted
    - Click the camera button to capture the current frame
    - The captured image will be used as input for depth estimation
    
    ## 🎬 Video Processing Tips
    - Supports multiple video formats (MP4, AVI, MOV, etc.)
    - Video processing may take some time, please be patient
    - Processing progress will be displayed in real-time
    - The output video will maintain the same frame rate as the input
    """)


if __name__ == "__main__":
    demo.launch(
        server_name="0.0.0.0",
        server_port=7860,
        share=False,
        show_error=True
    )