Spaces:
Paused
Paused
File size: 12,438 Bytes
682910e 6248af7 f2a1cfa 33fa314 f2a1cfa 33fa314 efffc2e 6248af7 f2a1cfa 6248af7 f2a1cfa 6248af7 f2a1cfa 6248af7 f2a1cfa 6248af7 f2a1cfa 6248af7 f2a1cfa 6248af7 f2a1cfa 6248af7 f2a1cfa 6248af7 f2a1cfa 6248af7 f2a1cfa 6248af7 f2a1cfa 6248af7 f2a1cfa 6248af7 f2a1cfa 6248af7 f2a1cfa 6248af7 f2a1cfa 6248af7 f2a1cfa 6248af7 f2a1cfa 6248af7 f2a1cfa 6248af7 f2a1cfa 6248af7 f2a1cfa 6248af7 f2a1cfa 6248af7 f2a1cfa 6248af7 f2a1cfa 6248af7 f2a1cfa 6248af7 f2a1cfa 6248af7 f2a1cfa 6248af7 f2a1cfa 6248af7 f2a1cfa 6248af7 b336194 2489359 6248af7 f2a1cfa |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 |
import json
import re
import os
from pathlib import Path
from typing import Dict, List, Optional, Union
from pdfminer.high_level import extract_text as pdf_extract_text
from docx import Document
from transformers import AutoTokenizer, AutoModelForTokenClassification, pipeline
import logging
# Set up logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
class ResumeParser:
def __init__(self):
self.ner_pipeline = None
self.model_loaded = False
self._load_model()
def _load_model(self):
"""Load the NER model with error handling and fallbacks"""
try:
# Try the original model first
MODEL_NAME = "manishiitg/resume-ner"
logger.info(f"Attempting to load model: {MODEL_NAME}")
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
model = AutoModelForTokenClassification.from_pretrained(MODEL_NAME)
self.ner_pipeline = pipeline(
"ner",
model=model,
tokenizer=tokenizer,
aggregation_strategy="simple",
device=0 if os.environ.get("L4_GPU", "false").lower() == "true" else -1
)
self.model_loaded = True
logger.info("Model loaded successfully")
except Exception as e:
logger.warning(f"Failed to load primary model: {e}")
try:
# Fallback to a more reliable model
MODEL_NAME = "dbmdz/bert-large-cased-finetuned-conll03-english"
logger.info(f"Trying fallback model: {MODEL_NAME}")
self.ner_pipeline = pipeline(
"ner",
model=MODEL_NAME,
aggregation_strategy="simple",
device=0 if os.environ.get("L4_GPU", "false").lower() == "true" else -1
)
self.model_loaded = True
logger.info("Fallback model loaded successfully")
except Exception as e2:
logger.error(f"Failed to load fallback model: {e2}")
self.model_loaded = False
def extract_text(self, file_path: str) -> str:
"""Extract text from PDF or DOCX files with error handling"""
try:
path = Path(file_path)
if not path.exists():
raise FileNotFoundError(f"File not found: {file_path}")
if path.suffix.lower() == ".pdf":
text = pdf_extract_text(file_path)
# Clean up PDF text extraction artifacts
text = re.sub(r'\s+', ' ', text).strip()
logger.info(f"Extracted {len(text)} characters from PDF")
return text
elif path.suffix.lower() == ".docx":
doc = Document(file_path)
text = "\n".join([p.text for p in doc.paragraphs if p.text.strip()])
logger.info(f"Extracted {len(text)} characters from DOCX")
return text
else:
raise ValueError(f"Unsupported file format: {path.suffix}")
except Exception as e:
logger.error(f"Error extracting text: {e}")
raise
def extract_with_regex(self, text: str) -> Dict[str, List[str]]:
"""Improved regex patterns for extraction"""
patterns = {
'email': r'\b[A-Za-z0-9._%+-]+@[A-Za-z0-9.-]+\.[A-Z|a-z]{2,}\b',
'phone': r'(?:\+?\d{1,3}[-.\s]?)?\(?\d{3}\)?[-.\s]?\d{3}[-.\s]?\d{4}',
'skills': r'(?i)(?:skills?|technologies?|tools?|expertise)[:\-\s]*(.*?)(?:\n\n|\n\s*\n|$)',
'education': r'(?i)(?:education|degree|university|college|bachelor|master|phd)[:\-\s]*(.*?)(?:\n\n|\n\s*\n|$)',
'experience': r'(?i)(?:experience|work\shistory|employment|job\shistory)[:\-\s]*(.*?)(?:\n\n|\n\s*\n|$)',
'name': r'^(?!(resume|cv|curriculum vitae|\d))[A-Z][a-z]+(?:\s+[A-Z][a-z]+)+'
}
results = {}
for key, pattern in patterns.items():
matches = re.findall(pattern, text, re.MULTILINE | re.IGNORECASE)
if key == 'name' and matches:
# Take the first likely name match
results[key] = [matches[0].strip()]
else:
# Clean and filter matches
cleaned = [m.strip() for m in matches if m.strip()]
if cleaned:
results[key] = cleaned
return results
def extract_name_from_text(self, text: str) -> str:
"""Improved name extraction heuristics"""
# First try to find name using regex
name_match = re.search(
r'^(?!(resume|cv|curriculum vitae|\d))[A-Z][a-z]+(?:\s+[A-Z][a-z]+)+',
text,
re.MULTILINE | re.IGNORECASE
)
if name_match:
return name_match.group(0).strip()
# Fallback to line-based approach
lines = text.split('\n')
for line in lines[:10]: # Check first 10 lines
line = line.strip()
if line and 2 <= len(line.split()) <= 4:
# Check if it looks like a name (not email, phone, etc.)
if not re.search(r'[@\d+\-\(\)]', line):
if line[0].isupper() and not line.lower().startswith(('resume', 'cv', 'curriculum')):
return line
return "Not Found"
def process_ner_entities(self, entities: List[Dict]) -> Dict[str, List[str]]:
"""Process NER entities with improved logic"""
results = {
"name": [],
"skills": [],
"education": [],
"experience": []
}
logger.info(f"Processing {len(entities)} entities")
for ent in entities:
label = ent.get("entity_group", "").upper()
value = ent.get("word", "").strip()
confidence = ent.get("score", 0)
# Skip low confidence entities and empty values
if confidence < 0.7 or not value:
continue
# Normalize labels
if label in ["PERSON", "PER", "NAME"]:
results["name"].append(value)
elif label in ["SKILL", "TECH", "TECHNOLOGY"]:
results["skills"].append(value)
elif label in ["EDUCATION", "DEGREE", "EDU", "ORG"] and "university" not in value.lower():
results["education"].append(value)
elif label in ["EXPERIENCE", "JOB", "ROLE", "POSITION", "WORK"]:
results["experience"].append(value)
# Deduplicate and clean results
for key in results:
results[key] = list(dict.fromkeys(results[key])) # Preserve order
return results
def merge_results(self, ner_results: Dict, regex_results: Dict) -> Dict[str, str]:
"""Merge NER and regex results intelligently"""
merged = {
"name": "Not Found",
"email": "Not Found",
"phone": "Not Found",
"skills": "Not Found",
"education": "Not Found",
"experience": "Not Found"
}
# Name - prioritize NER, then regex, then text extraction
if ner_results.get("name"):
merged["name"] = " ".join(ner_results["name"][:1]) # Take first name only
elif regex_results.get("name"):
merged["name"] = regex_results["name"][0]
# Email and phone - only from regex
if regex_results.get("email"):
merged["email"] = regex_results["email"][0]
if regex_results.get("phone"):
merged["phone"] = regex_results["phone"][0]
# Skills - combine both sources
all_skills = []
if ner_results.get("skills"):
all_skills.extend(ner_results["skills"])
if regex_results.get("skills"):
all_skills.extend(regex_results["skills"])
if all_skills:
merged["skills"] = ", ".join(list(dict.fromkeys(all_skills))[:10]) # Limit to 10 skills
# Education - combine both sources
all_edu = []
if ner_results.get("education"):
all_edu.extend(ner_results["education"])
if regex_results.get("education"):
all_edu.extend(regex_results["education"])
if all_edu:
merged["education"] = ", ".join(list(dict.fromkeys(all_edu))[:3] # Limit to 3 items
# Experience - combine both sources
all_exp = []
if ner_results.get("experience"):
all_exp.extend(ner_results["experience"])
if regex_results.get("experience"):
all_exp.extend(regex_results["experience"])
if all_exp:
merged["experience"] = ", ".join(list(dict.fromkeys(all_exp))[:3] # Limit to 3 items
return merged
def parse_resume(self, file_path: str, filename: str = None) -> Dict[str, str]:
"""Parse resume with multiple extraction methods"""
try:
# Extract text
text = self.extract_text(file_path)
if not text or len(text.strip()) < 10:
raise ValueError("Extracted text is too short or empty")
logger.info(f"Text preview: {text[:200]}...")
# Initialize results
ner_results = {
"name": [],
"skills": [],
"education": [],
"experience": []
}
# Method 1: Try NER model if available
if self.model_loaded and self.ner_pipeline:
try:
logger.info("Using NER model for extraction")
entities = self.ner_pipeline(text[:5120]) # Limit input size for NER
ner_results = self.process_ner_entities(entities)
logger.info(f"NER results: {json.dumps(ner_results, indent=2)}")
except Exception as e:
logger.warning(f"NER extraction failed: {e}")
# Method 2: Regex extraction
logger.info("Using regex patterns for extraction")
regex_results = self.extract_with_regex(text)
logger.info(f"Regex results: {json.dumps(regex_results, indent=2)}")
# Method 3: Name extraction fallback
if not ner_results.get("name") and not regex_results.get("name"):
name = self.extract_name_from_text(text)
if name != "Not Found":
regex_results["name"] = [name]
# Merge all results
final_results = self.merge_results(ner_results, regex_results)
# If name still not found, try filename
if final_results["name"] == "Not Found" and filename:
# Try to extract name from filename (common pattern: "Firstname Lastname - Resume.pdf")
name_from_file = re.sub(r'[-_].*', '', filename).strip()
if len(name_from_file.split()) >= 2:
final_results["name"] = name_from_file
logger.info("Parsing completed successfully")
return final_results
except Exception as e:
logger.error(f"Error parsing resume: {e}")
return {
"name": "Error",
"email": "Error",
"phone": "Error",
"skills": "Error",
"education": "Error",
"experience": "Error",
"error": str(e)
}
# Create global instance
resume_parser = ResumeParser()
def parse_resume(file_path: str, filename: str = None) -> Dict[str, str]:
"""Main function to parse resume"""
return resume_parser.parse_resume(file_path, filename)
if __name__ == "__main__":
# Test the parser
test_file = input("Enter path to resume file: ")
if os.path.exists(test_file):
results = parse_resume(test_file, os.path.basename(test_file))
print("\nParsing Results:")
print(json.dumps(results, indent=2))
else:
print("File not found") |