SceneDINO / datasets /kitti_360 /annotation.py
jev-aleks's picture
scenedino init
9e15541
#!/usr/bin/python
#
from __future__ import print_function, absolute_import, division
import glob
import json
import os
import struct
import xml.etree.ElementTree as ET
from collections import defaultdict
from collections import namedtuple
import numpy as np
from matplotlib import cm
from skimage import io, filters
# get current date and time
# A point in a polygon
Point = namedtuple('Point', ['x', 'y'])
from abc import ABCMeta
from datasets.kitti_360.labels import labels, id2label, kittiId2label, name2label
MAX_N = 1000
def local2global(semanticId, instanceId):
globalId = semanticId*MAX_N + instanceId
if isinstance(globalId, np.ndarray):
return globalId.astype(np.int)
else:
return int(globalId)
def global2local(globalId):
semanticId = globalId // MAX_N
instanceId = globalId % MAX_N
if isinstance(globalId, np.ndarray):
return semanticId.astype(np.int), instanceId.astype(np.int)
else:
return int(semanticId), int(instanceId)
annotation2global = defaultdict()
# Abstract base class for annotation objects
class KITTI360Object:
__metaclass__ = ABCMeta
def __init__(self):
# the label
self.label = ""
# colormap
self.cmap = cm.get_cmap('Set1')
self.cmap_length = 9
def getColor(self, idx):
if idx==0:
return np.array([0,0,0])
return np.asarray(self.cmap(idx % self.cmap_length)[:3])*255.
def assignColor(self):
if self.semanticId>=0:
self.semanticColor = id2label[self.semanticId].color
if self.instanceId>0:
self.instanceColor = self.getColor(self.instanceId)
else:
self.instanceColor = self.semanticColor
# Class that contains the information of a single annotated object as 3D bounding box
class KITTI360Bbox3D(KITTI360Object):
# Constructor
def __init__(self):
KITTI360Object.__init__(self)
# the polygon as list of points
self.vertices = []
self.faces = []
self.lines = [[0,5],[1,4],[2,7],[3,6],
[0,1],[1,3],[3,2],[2,0],
[4,5],[5,7],[7,6],[6,4]]
# the ID of the corresponding object
self.semanticId = -1
self.instanceId = -1
self.annotationId = -1
# the window that contains the bbox
self.start_frame = -1
self.end_frame = -1
# timestamp of the bbox (-1 if statis)
self.timestamp = -1
# projected vertices
self.vertices_proj = None
self.meshes = []
# name
self.name = ''
def __str__(self):
return self.name
def generateMeshes(self):
self.meshes = []
if self.vertices_proj:
for fidx in range(self.faces.shape[0]):
self.meshes.append( [ Point(self.vertices_proj[0][int(x)], self.vertices_proj[1][int(x)]) for x in self.faces[fidx]] )
def parseOpencvMatrix(self, node):
rows = int(node.find('rows').text)
cols = int(node.find('cols').text)
data = node.find('data').text.split(' ')
mat = []
for d in data:
d = d.replace('\n', '')
if len(d)<1:
continue
mat.append(float(d))
mat = np.reshape(mat, [rows, cols])
return mat
def parseVertices(self, child):
transform = self.parseOpencvMatrix(child.find('transform'))
R = transform[:3,:3]
T = transform[:3,3]
vertices = self.parseOpencvMatrix(child.find('vertices'))
faces = self.parseOpencvMatrix(child.find('faces'))
vertices = np.matmul(R, vertices.transpose()).transpose() + T
self.vertices = vertices
self.faces = faces
self.R = R
self.T = T
def parseBbox(self, child):
semanticIdKITTI = int(child.find('semanticId').text)
self.semanticId = kittiId2label[semanticIdKITTI].id
self.instanceId = int(child.find('instanceId').text)
self.name = kittiId2label[semanticIdKITTI].name
self.start_frame = int(child.find('start_frame').text)
self.end_frame = int(child.find('end_frame').text)
self.timestamp = int(child.find('timestamp').text)
self.annotationId = int(child.find('index').text) + 1
global annotation2global
annotation2global[self.annotationId] = local2global(self.semanticId, self.instanceId)
self.parseVertices(child)
def parseStuff(self, child):
classmap = {'driveway': 'parking', 'ground': 'terrain', 'unknownGround': 'ground',
'railtrack': 'rail track', 'bigPole': 'pole', 'unknownObject': 'unknown object',
'smallPole': 'smallpole', 'trafficSign': 'traffic sign', 'trashbin': 'trash bin',
'guardrail': 'guard rail', 'trafficLight': 'traffic light', 'pedestrian': 'person',
'vendingmachine': 'vending machine', 'unknownConstruction': 'unknown construction',
'unknownVehicle': 'unknown vehicle'}
label = child.find('label').text
if label in classmap.keys():
label = classmap[label]
self.start_frame = int(child.find('start_frame').text)
self.end_frame = int(child.find('end_frame').text)
self.timestamp = int(child.find('timestamp').text)
self.semanticId = name2label[label].id
self.name = label
self.parseVertices(child)
# Class that contains the information of the point cloud a single frame
class KITTI360Point3D(KITTI360Object):
# Constructor
def __init__(self):
KITTI360Object.__init__(self)
self.vertices = []
self.vertices_proj = None
# the ID of the corresponding object
self.semanticId = -1
self.instanceId = -1
self.annotationId = -1
# name
self.name = ''
# color
self.semanticColor = None
self.instanceColor = None
def __str__(self):
return self.name
def generateMeshes(self):
pass
# The annotation of a whole image, including semantic and instance
class Annotation2D:
# Constructor
def __init__(self, colormap='Set1'):
# the width of that image and thus of the label image
self.imgWidth = 0
# the height of that image and thus of the label image
self.imgHeight = 0
self.instanceId = None
self.semanticId = None
self.instanceImg = None
self.semanticImg = None
# savedId = semanticId*N + instanceId
self.N = 1000
# colormap
self.cmap = cm.get_cmap(colormap)
if colormap == 'Set1':
self.cmap_length = 9
else:
raise "Colormap length need to be specified!"
def getColor(self, idx):
if idx==0:
return np.array([0,0,0])
return np.asarray(self.cmap(idx % self.cmap_length)[:3])*255.
# Load confidence map
def loadConfidence(self, imgPath):
self.confidenceMap = io.imread(imgPath)
self.confidenceMap = np.asarray(self.confidenceMap).astype(np.float)/255.
# Load instance id
def loadInstance(self, imgPath, gtType='instance', toImg=True, contourType='instance', semanticCt=True, instanceCt=True):
instanceId = io.imread(imgPath)
self.instanceId = np.asarray( instanceId % self.N )
self.semanticId = np.asarray( instanceId // self.N )
if not toImg:
return
if gtType=='semantic':
self.toSemanticImage()
elif gtType=='instance':
self.toInstanceImage()
if semanticCt or instanceCt:
self.getBoundary()
if gtType=='semantic' and semanticCt:
boundaryImg = self.toBoundaryImage(contourType=contourType, instanceOnly=False)
self.semanticImg = self.semanticImg * (1-boundaryImg) + \
np.ones_like(self.semanticImg) * boundaryImg * 255
if gtType=='instance' and instanceCt:
boundaryImg = self.toBoundaryImage(contourType=contourType, instanceOnly=True)
self.instanceImg = self.instanceImg * (1-boundaryImg) + \
np.ones_like(self.instanceImg) * boundaryImg * 255
def toSemanticImage(self):
self.semanticImg = np.zeros((self.semanticId.size, 3))
for label in labels:
mask = self.semanticId==label.id
mask = mask.flatten()
self.semanticImg[mask] = np.asarray(label.color)
self.semanticImg = self.semanticImg.reshape(*self.semanticId.shape, 3)
def toInstanceImage(self):
self.instanceImg = np.zeros((self.instanceId.size, 3))
uniqueId = np.unique(self.instanceId)
for uid in uniqueId:
mask = self.instanceId==uid
mask = mask.flatten()
self.instanceImg[mask] = np.asarray(self.getColor(uid))
self.instanceImg = self.instanceImg.reshape(*self.instanceId.shape, 3)
def getBoundary(self):
# semantic contours
uniqueId = np.unique(self.semanticId)
self.semanticContours = {}
for uid in uniqueId:
mask = (self.semanticId==uid).astype(np.uint8) * 255
mask_filter = filters.laplace(mask)
self.semanticContours[uid] = np.expand_dims(np.abs(mask_filter)>0, 2)
# instance contours
globalId = local2global(self.semanticId, self.instanceId)
uniqueId = np.unique(globalId)
self.instanceContours = {}
for uid in uniqueId:
mask = (globalId==uid).astype(np.uint8) * 255
mask_filter = filters.laplace(mask)
self.instanceContours[uid] = np.expand_dims(np.abs(mask_filter)>0, 2)
def toBoundaryImage(self, contourType='instance', instanceOnly=True):
if contourType=='semantic':
contours = self.semanticContours
assert(instanceOnly==False)
elif contourType=='instance':
contours = self.instanceContours
else:
raise ("Contour type can only be 'semantic' or 'instance'!")
if not instanceOnly:
boundaryImg = [contours[k] for k in contours.keys()]
else:
boundaryImg = [contours[k] for k in contours.keys() if global2local(k)[1]!=0]
boundaryImg = np.sum(np.asarray(boundaryImg), axis=0)
boundaryImg = boundaryImg>0
return boundaryImg
class Annotation2DInstance:
def __init__(self, gtPath, cam=0):
# trace the instances in all images
self.instanceDict = defaultdict(list)
#
instanceDictCached = os.path.join(gtPath, 'instanceDict.json')
print(instanceDictCached)
if os.path.isfile(instanceDictCached) and os.path.getsize(instanceDictCached)>0:
cachedDict = json.load( open(instanceDictCached) )
for k,v in cachedDict.items():
self.instanceDict[int(k)] = v
return
obj = Annotation2D()
gtPaths = glob.glob( os.path.join(gtPath, 'instance', '*.png') )
print (f'Found {len(gtPaths)} label images...')
for i,imgPath in enumerate(gtPaths):
if i%1000==0:
print(f'Processed {i}/{len(gtPaths)} label images...')
obj.loadInstance(imgPath, toImg=False)
globalId = local2global(obj.semanticId, obj.instanceId)
globalIdUnique = np.unique(globalId)
for idx in globalIdUnique:
self.instanceDict[int(idx)].append(os.path.basename(imgPath))
json.dump( self.instanceDict, open(instanceDictCached, 'w'))
# returns the paths that contains the specific instance
def __call__(self, semanticId, instanceId):
globalId = local2global(semanticId, instanceId)
return self.instanceDict[globalId]
# Meta class for KITTI360Bbox3D
class Annotation3D:
# Constructor
def __init__(self, labelDir='', sequence=''):
labelPath = glob.glob(os.path.join(labelDir, '*', '%s.xml' % sequence)) # train or test
if len(labelPath)!=1:
raise RuntimeError('%s does not exist! Please specify KITTI360_DATASET in your environment path.' % labelPath)
else:
labelPath = labelPath[0]
print('Loading %s...' % labelPath)
self.init_instance(labelPath)
def init_instance(self, labelPath):
# load annotation
tree = ET.parse(labelPath)
root = tree.getroot()
self.objects = defaultdict(dict)
self.num_bbox = 0
for child in root:
if child.find('transform') is None:
continue
obj = KITTI360Bbox3D()
obj.parseBbox(child)
globalId = local2global(obj.semanticId, obj.instanceId)
self.objects[globalId][obj.timestamp] = obj
self.num_bbox+=1
globalIds = np.asarray(list(self.objects.keys()))
semanticIds, instanceIds = global2local(globalIds)
for label in labels:
if label.hasInstances:
print(f'{label.name:<30}:\t {(semanticIds==label.id).sum()}')
print(f'Loaded {len(globalIds)} instances')
print(f'Loaded {self.num_bbox} boxes')
def __call__(self, semanticId, instanceId, timestamp=None):
globalId = local2global(semanticId, instanceId)
if globalId in self.objects.keys():
# static object
if len(self.objects[globalId].keys())==1:
if -1 in self.objects[globalId].keys():
return self.objects[globalId][-1]
else:
return None
# dynamic object
else:
return self.objects[globalId][timestamp]
else:
return None
class Annotation3DPly:
# parse fused 3D point cloud
def __init__(self, labelDir='', sequence='', isLabeled=True, isDynamic=False, showStatic=True):
if isLabeled and not isDynamic:
# x y z r g b semanticId instanceId isVisible confidence
self.fmt = '=fffBBBiiBf'
self.fmt_len = 28
elif isLabeled and isDynamic:
# x y z r g b semanticId instanceId isVisible timestamp confidence
self.fmt = '=fffBBBiiBif'
self.fmt_len = 32
elif not isLabeled and not isDynamic:
# x y z r g b
self.fmt = '=fffBBBB'
self.fmt_len = 16
else:
raise RuntimeError('Invalid binary format!')
# True for training data, False for testing data
self.isLabeled = isLabeled
# True for dynamic data, False for static data
self.isDynamic = isDynamic
# True for inspecting static data, False for inspecting dynamic data
self.showStatic = showStatic
pcdFolder = 'static' if self.showStatic else 'dynamic'
trainTestDir = 'train' if self.isLabeled else 'test'
self.pcdFileList = sorted(glob.glob(os.path.join(labelDir, trainTestDir, sequence, pcdFolder, '*.ply')))
print('Found %d ply files in %s' % (len(self.pcdFileList), sequence))
def readBinaryPly(self, pcdFile, n_pts=None):
with open(pcdFile, 'rb') as f:
plyData = f.readlines()
headLine = plyData.index(b'end_header\n')+1
plyData = plyData[headLine:]
plyData = b"".join(plyData)
n_pts_loaded = len(plyData)/self.fmt_len
# sanity check
if n_pts:
assert(n_pts_loaded==n_pts)
n_pts_loaded = int(n_pts_loaded)
data = []
for i in range(n_pts_loaded):
pts=struct.unpack(self.fmt, plyData[i*self.fmt_len:(i+1)*self.fmt_len])
data.append(pts)
data=np.asarray(data)
return data
def writeBinaryPly(self, pcdFile, data):
fmt = '=fffBBBiiB'
fmt_len = 24
n_pts = data.shape[0]
with open(pcdFile, 'wb') as f:
f.write(b'ply\n')
f.write(b'format binary_little_endian 1.0\n')
f.write(b'comment author Yiyi Liao\n')
f.write(b'element vertex %d\n' % n_pts)
f.write(b'property float x\n')
f.write(b'property float y\n')
f.write(b'property float z\n')
f.write(b'property uchar red\n')
f.write(b'property uchar green\n')
f.write(b'property uchar blue\n')
f.write(b'property int semantic\n')
class Annotation3DInstance(object):
instance_id = 0
labelId = 0
vert_count = 0
med_dist = -1
dist_conf = 0.0
def __init__(self, mesh_vert_instances, instance_id):
if (instance_id == -1):
return
self.instance_id = int(instance_id)
self.labelId = int(self.get_labelId(instance_id))
self.vert_count = int(self.get_instance_verts(mesh_vert_instances, instance_id))
def get_labelId(self, instance_id):
return int(instance_id // 1000)
def get_instance_verts(self, mesh_vert_instances, instance_id):
return (mesh_vert_instances == instance_id).sum()
def to_json(self):
return json.dumps(self, default=lambda o: o.__dict__, sort_keys=True, indent=4)
def to_dict(self):
dict = {}
dict["instance_id"] = self.instance_id
dict["labelId"] = self.labelId
dict["vert_count"] = self.vert_count
dict["med_dist"] = self.med_dist
dict["dist_conf"] = self.dist_conf
return dict
def from_json(self, data):
self.instance_id = int(data["instance_id"])
self.labelId = int(data["labelId"])
self.vert_count = int(data["vert_count"])
if ("med_dist" in data):
self.med_dist = float(data["med_dist"])
self.dist_conf = float(data["dist_conf"])
def __str__(self):
return "("+str(self.instance_id)+")"
# a dummy example
if __name__ == "__main__":
ann = Annotation3D()