Spaces:
Sleeping
Sleeping
File size: 3,441 Bytes
1eb2368 078fee7 dfb673b 078fee7 58fac9f 078fee7 1eb2368 dfb673b 078fee7 58fac9f 078fee7 6ee4115 078fee7 1eb2368 dfb673b 6ee4115 078fee7 dfb673b 078fee7 dfb673b 078fee7 dfb673b 078fee7 0eec7e8 1eb2368 dfb673b 078fee7 0eec7e8 1eb2368 dfb673b 1eb2368 6ee4115 0eec7e8 1eb2368 dfb673b 1eb2368 078fee7 1eb2368 6ee4115 0eec7e8 1eb2368 078fee7 0eec7e8 078fee7 dfb673b 1eb2368 dfb673b 1eb2368 dfb673b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 |
import streamlit as st
import pandas as pd
import numpy as np
import tensorflow as tf
import joblib
import os
# Define file paths (assuming all files are in the same folder as this script)
BASE_DIR = os.path.dirname(__file__)
KERAS_MODEL_PATH = os.path.join(BASE_DIR, "recommender_model.keras")
MOVIES_PATH = os.path.join(BASE_DIR, "movies.csv")
ENCODINGS_PATH = os.path.join(BASE_DIR, "encodings.pkl")
@st.cache_resource
def load_model():
if not os.path.exists(KERAS_MODEL_PATH):
st.error(f"β Model file not found at: {KERAS_MODEL_PATH}")
st.stop()
try:
return tf.keras.models.load_model(KERAS_MODEL_PATH)
except Exception as e:
st.error(f"β Failed to load model:\n\n{e}")
st.stop()
@st.cache_data
def load_assets():
if not os.path.exists(MOVIES_PATH):
st.error("β movies.csv not found.")
st.stop()
if not os.path.exists(ENCODINGS_PATH):
st.error("β encodings.pkl not found.")
st.stop()
try:
df_movies = pd.read_csv(MOVIES_PATH)
user_map, movie_map = joblib.load(ENCODINGS_PATH)
return df_movies, user_map, movie_map
except Exception as e:
st.error(f"β Failed to load assets:\n\n{e}")
st.stop()
# Load model and assets
model = load_model()
movies_df, user2idx, movie2idx = load_assets()
reverse_movie_map = {v: k for k, v in movie2idx.items()}
# UI
st.title("π¬ TensorFlow Movie Recommender")
st.write("Select some movies you've liked to get personalized recommendations:")
# Movie title selection
movie_titles = movies_df.set_index("movieId")["title"].to_dict()
movie_choices = [movie_titles[mid] for mid in movie2idx if mid in movie_titles]
selected_titles = st.multiselect("ποΈ Liked movies", sorted(movie_choices))
# User ratings dict
user_ratings = {}
for title in selected_titles:
movie_id = next((k for k, v in movie_titles.items() if v == title), None)
if movie_id:
user_ratings[movie_id] = 5.0
# Generate recommendations
if st.button("π― Get Recommendations"):
if not user_ratings:
st.warning("Please select at least one movie.")
else:
liked_indices = [movie2idx[m] for m in user_ratings if m in movie2idx]
if not liked_indices:
st.error("β οΈ No valid movie encodings found.")
st.stop()
try:
# Calculate average embedding and similarity scores
avg_embedding = tf.reduce_mean(model.layers[2](tf.constant(liked_indices)), axis=0, keepdims=True)
all_movie_indices = tf.range(len(movie2idx))
movie_embeddings = model.layers[3](all_movie_indices)
scores = tf.reduce_sum(avg_embedding * movie_embeddings, axis=1).numpy()
top_indices = np.argsort(scores)[::-1]
# Top 10 recommendations excluding already liked
recommended = []
for idx in top_indices:
mid = reverse_movie_map.get(idx)
if mid not in user_ratings and mid in movie_titles:
recommended.append((movie_titles[mid], scores[idx]))
if len(recommended) >= 10:
break
st.subheader("πΏ Top 10 Recommendations")
for title, score in recommended:
st.write(f"**{title}** β Score: `{score:.3f}`")
except Exception as e:
st.error(f"β Error generating recommendations:\n\n{e}")
|